首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory syncytial virus mRNA coding assignments.   总被引:12,自引:9,他引:3       下载免费PDF全文
The polypeptide coding assignments for six of the respiratory syncytial virus-specific mRNAs were determined by translation of the individual mRNAs in vitro. The coding assignments of the RNAs are as follows. RNA band 1 is complex and can be separated into at least two components on the basis of electrophoretic mobility (molecular weights [MWs] approximately equal to 0.21 X 10(6) and 0.31 X 10(6), respectively) that code for three polypeptides of 9.5, 11, and 14 kilodaltons (K). RNA 2 (MW, 0.39 X 10(6)) codes for a 34K polypeptide; RNA 3 (MW, 0.40 X 10(6)) codes for a 26K polypeptide; RNA 4 (MW, 0.47 X 10(6)) codes for a 42K polypeptide; and RNA 5 (MW, 0.74 X 10(6)) codes for a 59K polypeptide. By limited-digest peptide mapping, the 34, 26, and 42K polypeptides synthesized in vitro appeared to be unique. Additionally, peptide mapping showed that the 34, 26, and 42K polypeptides synthesized in vitro were indistinguishable from their counterparts synthesized in infected cells. Thus, the 34, 26, and 42K polypeptides coded for by mRNAs 2, 3, and 4, respectively, were identified as the respiratory syncytial virus phosphoprotein (34K), matrix protein (26K), and nucleocapsid protein (42K), respectively. RNA 5 was shown to code for a 59K polypeptide. The 59K polypeptide synthesized in vitro did not comigrate with any polypeptide specific to infected cells, suggesting that it is a candidate for co- or post-translational modification.  相似文献   

2.
3.
The gene coding for the AU-rich RNA required for mitochondrial RNase P activity in Saccharomyces cerevisiae codes for a 490-base RNA while that in Candida glabrata codes for a 227-base RNA. We have detected a 140-nucleotide RNA coded by the mitochondrial DNA from Saccharomycopsis fibuligera by hybridization with an oligonucleotide complementary to a conserved sequence found in mitochondrial and prokaryotic RNase P RNAs. DNA sequence analysis of the mitochondrial DNA from the region coding for this RNA revealed a second conserved sequence block characteristic of RNase P RNA genes and the presence of a downstream tRNA(Pro) gene. Like previously characterized mitochondrial RNase P RNAs, this small RNA is extremely AU-rich. The discovery of this 140-base RNA suggests that naturally occurring RNase P RNAs may be quite small.  相似文献   

4.
A soluble enzyme system has been prepared from a phage P4-infected Escherichia coli strain that supports the replication of exogenous, supercoiled P4 DNA. This DNA synthesis in vitro depends upon the four deoxyribonucleotides and ATP, but is enhanced about four- to fivefold by the presence of other ribonucleotides. E. coli DNA polymerase III holoenzyme, the E. coli single-strand DNA binding protein, and the partially purified P4 alpha gene product are required for replication in vitro. Rifamycin does not inhibit P4 replication in vitro. Since the P4 alpha gene codes for a rifamycin-resistant RNA polymerase (Barrett et al., 1983), and since P4 DNA replication is independent of the host primase (Bowden et al., 1975), we believe the alpha gene product is functioning as a P4-specific DNA primase.  相似文献   

5.
In previous communications we reported that the eight RNA segments of influenza A/PR/8/34 (HON1) virus could be distinguished from corresponding segments of influenza A/Hong Kong/8/68 (H3N2) virus by migration on polyacrylamide-urea gels. Examination of the RNA patterns of the two parent viruses and recombinants derived from them in concert with serological identification of surface proteins and analysis of the other proteins on sodium dodecyl sulfate gradient gels permitted the identification of the genes coding for hemagglutinin, neuraminidase, and the P1, P2, and P3 proteins (Palese and Schulman, 1976; P. Palese et al., Virology, in press). In the present report we have extended these observations using similar techniques to examine other recombinants and have identified the genes coding for the remaining virus-specific moving RNA segment as 1) and segment 6 of Hong Kong virus coding for the respective nucleoproteins, and that segment 7 of both viruses codes for the membtane protein and RNA segment 8 codes for the nonstructural protein. This completes the mapping of the influenza A virus genome.  相似文献   

6.
The cytoplasm of vesicular stomatitis virus (VSV)-infected BHK cells has been separated into a fraction containing the membrane-bound polysomes and the remaining supernatant fraction. Total poly(A)-containing RNA was isolated from each fraction and purified. A 17S class of VSV mRNA was found associated almost exclusively with the membrane-bound polysomes, whereas 14,5S and 12S RNAs were found mostly in the postmembrane cytoplasmic supernatant. Poly(A)-containing VSV RNA synthesized in vitro by purified virus was resolved into the same size classes. The individual RNA fractions isolated from VSV-infected cells or synthesized in vitro were translated in cell-free extracts of wheat germ, and their polypeptide products were compared by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The corresponding in vivo and in vitro RNA fractions qualitatively direct the synthesis of the same viral polypeptides and therefore appear to contain the same mRNA species. By tryptic peptide analysis of their translation products, the in vivo VSV mRNA species have been identified. The 17S RNA, which is compartmentalized on membrane-bound polysomes, codes for a protein of molecular weight 63,000 (P-63) which is most probably a nonglycosylated form of the viral glycoprotein, G. Of the viral RNA species present in the remaining cytoplasmic supernatant, the 14.5S RNA codes almost exclusively for the N protein, whereas the 12S RNA codes predominantly for both the NS and M proteins of the virion.  相似文献   

7.
Cell-free translation of murine coronavirus RNA.   总被引:18,自引:14,他引:4       下载免费PDF全文
The coding assignments of the intracellular murine hepatitis virus-specific subgenomic RNA species and murine hepatitis virion RNA have been investigated by cell-free translation. The six murine hepatitis virus-specific subgenomic RNAs were partially purified by agarose gel electrophoresis and translated in an mRNA-dependent rabbit reticulocyte lysate, and the cell-free translation products were characterized by gel electrophoresis, immunoprecipitation, and tryptic peptide mapping. These studies have shown that RNA 7 codes for the nucleocapsid protein, RNA 6 codes for the E1 protein, RNA 3 codes for the E2 protein, and RNA 2 codes for a 35,000-dalton nonstructural protein. Genomic RNA directs the cell-free synthesis of three structurally related polypeptides of greater than 200,000 in molecular weight.  相似文献   

8.
The 32S RNA of the Friend strain of spleen focus-forming virus (SFFV) contains two sets of sequences: about half is specific to SFFV, and the other half is in common with the sequence of the helper lymphatic leukemia virus. Fingerprinting analysis of RNase T1 oligonucleotides showed that the SFFV-specific sequences were located in two distinct regions: in the 3' half and near the 5' terminus of the genome. Translation of SFFV RNA in a cell-free system yielded three SFFV-specific polypeptides: two main products with molecular weights of about 47,000 (P47) and 16,000 (P16) and a variable amount of a product with a molecular weight of 40,000 (P40). P47 was translated from polyadenylic acid-containing fragments of 1,500 to 3,000 nucleotides with SFFV-specific sequences from the 3' half of the genome, whereas P16, which contained peptides in common with those of P47, was synthesized by smaller RNA. P47 formed in vitro was found to be structurally related to the protein portion of a glycoprotein, gp55, specifically found in SFFV-infected cells in vitro. It is concluded from the results that a defective env gene containing SFFV-specific sequences in the 3' half of the genome codes for SFFV-specific gp55.  相似文献   

9.
Improved fractionation of double-stranded RNA segments 7, 8, and 9 of simian rotavirus SA11 has permitted their isolation and individual translation in vitro. Segment 7 codes for p31 (NS2), segment 8 codes for p33 (NS1), and the segment 9 gene product resembles the gp34 precursor observed in SA11 virus-infected cells. In vitro glycosylation of translation products of segments 5 and 10 was also observed.  相似文献   

10.
11.
Mammalian surfactant is an incompletely defined mixture of lipids and associated proteins of molecular mass 35,000 Da and approximately 6,000 Da. Surfactant preparations which are highly effective in treating respiratory distress syndrome in premature infants lack the 35-kDa proteins, but contain the 6-kDa proteins. We isolated and partially sequenced one of these low molecular weight proteins from the lung lavage material of an alveolar proteinosis patient. Oligonucleotides deduced from the sequence were used as probes to isolate a human cDNA clone. The clone codes for a 42-kDa protein which contains the sequence of the 6-kDa protein. Messenger RNA coding for the 42-kDa protein was identified in human lung RNA by in vitro translation and immunoprecipitation of the translation products with an antiserum against purified bovine surfactant 6-kDa proteins. Immunoprecipitation of the 42-kDa primary translation product is inhibited by the presence of the bovine 6-kDa protein. These observations suggest a precursor-product relationship of the 42-kDa protein to one of the 6-kDa proteins.  相似文献   

12.
13.
14.
An in vitro selection system was devised to select RNAs based on their tertiary structural stability, independent of RNA activity. Selection studies were conducted on the P4-P6 domain from the Tetrahymena thermophila group I intron, an autonomous self-folding unit that contains several important tertiary folding motifs including the tetraloop receptor and the A-rich bulge. Partially randomized P4-P6 molecules were selected based on their ability to fold into compact structures using native gel electrophoresis in the presence of decreasing concentrations of MgCl2. After 10 rounds of the selection process, a number of sequence alterations were identified that stabilized the P4-P6 RNA. One of these, a single base deletion of C209 within the P4 helix, significantly stabilized the P4-P6 molecule and would not have been identified by an activity-based selection because of its essential role for ribozyme function. Additionally, the sequence analysis provided evidence that stabilization of secondary structure may contribute to overall tertiary stability for RNAs. This system for probing RNA structure irrespective of RNA activity allows analysis of RNA structure/function relationships by identifying nucleotides or motifs important for folding and then comparing them with RNA sequences required for function.  相似文献   

15.
16.
17.
18.
19.
BACKGROUND: The structure of P4-P6, a 160 nucleotide domain of the self-splicing Tetrahymena thermophila intron, was solved previously. Mutants of the P4-P6 RNA that form a more stable tertiary structure in solution were recently isolated by successive rounds of in vitro selection and amplification. RESULTS: We show that a single-site mutant (Delta C209) possessing greater tertiary stability than wild-type P4-P6 also crystallizes much more rapidly and under a wider variety of conditions. The crystal structure provides a satisfying explanation for the increased stability of the mutant; the deletion of C209 allows the adjacent bulged adenine to enter the P4 helix and form an A-G base pair, presumably attenuating the conformational flexibility of the helix. The structure of another mutant (Delta A210) was also solved and supports this interpretation. The crystals of Delta C209 diffract to a higher resolution limit than those of wild-type RNA (2.25 A versus 2.8 A), allowing assignment of innersphere and outersphere coordination contacts for 27 magnesium ions. Structural analysis reveals an intricate solvent scaffold with a preponderance of ordered water molecules on the inside rather than the surface of the folded RNA domain. CONCLUSIONS: In vitro evolution facilitated the identification of a highly stable, structurally homogeneous mutant RNA that was readily crystallizable. Analysis of the structure suggests that improving RNA secondary structure can stabilize tertiary structure and perhaps promote crystallization. In addition, the higher resolution model provides new details of metal ion-RNA interactions and identifies a core of ordered water molecules that may be integral to RNA tertiary structure formation.  相似文献   

20.
A Vioque 《Nucleic acids research》1997,25(17):3471-3477
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号