首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of hemopoietic stem cells and other cell types in the induction and maintenance of immunologic tolerance in the thymus was investigated by intravenous injection of Mls-semi-allogeneic cells into newborn mice less than 24 hr after birth. Mls-specific tolerance was induced by inoculation of peritoneal cells and thymus cells, and the tolerant state was compared with that induced by bone marrow cells which had hemopoietic stem cell activity and were able to create a stable chimera in both central and peripheral lymphoid organs. When peritoneal or thymus cells were injected, the level of tolerance attained was proportional to the number of cells injected, though peritoneal cells were 20 times as effective as thymus cells. In vivo functions of tolerance-inducing cells and their immediate precursors were radiosensitive and belonged to a Thy-1-, nylon-wool-nonadherent (probably non-B), weakly Sephadex G-10-adherent cell population. Tolerance induced by peritoneal cell injections was transient, starting to terminate within the first 2 weeks of life, while tolerance caused by bone marrow cell injections persisted through more than 6 weeks. Such transient tolerance induced by the former became long-lasting when followed by an additional injection of bone marrow cells, which did not cause thymic lymphocyte chimerism. All data indicated that bone marrow stem cells were engaged in tolerance induction and maintenance by continuously supplying tolerance-inducing nonlymphocytes.  相似文献   

2.
The effects of an autologous transplanted mammary tumor (RIII-T3) on hemopoiesis in RIII mice are described. Tumor-bearing animals died 30 to 40 days after inoculation and displayed splenomegaly, extreme neutrophilia, and moderately increased monocyte levels in the spleen, peripheral blood, and bone marrow. The precursors of neutrophils and monocytes, granulocyte/macrophage colony-forming cells (GM-CFC) were elevated in the spleen, bone marrow, and peripheral blood. RIII-T3-conditioned medium stimulated bone marrow GM-CFC and caused the myelomonocytic cell line, WEHI-3B, to differentiate in vitro. The conditioned medium did not stimulate erythroid, megakaryocyte, or eosinophil colony formation. When conditioned medium was fractionated, two peaks of activity corresponding to GM-CSF and G-CSF were observed, suggesting that the extreme neutrophilia observed in tumor-bearing animals may result from chronic exposure of the hemopoietic system to these hemopoietic hormones.  相似文献   

3.
Osteoclasts are the cells that resorb bone. It is generally presumed, on the basis of indirect experiments, that they are derived from the hemopoietic stem cell. However, this origin has never been established. We have developed an assay for osteoclastic differentiation in which bone marrow cells are incubated in liquid culture on slices of cortical bone. The bone slices are inspected in the scanning electron microscope after incubation for the presence of excavations, which are characteristic of osteoclastic activity. We have now incubated bone marrow cells at low density, or a factor-dependent mouse hemopoietic cell line (FDCP-mix A4) with 1,25 dihydroxyvitamin D3 (a hormone which we have previously found induces osteoclastic differentiation) with and without murine bone marrow stromal cells, or with and without 3T3 cells, on bone slices. Neither the bone marrow cells nor the bone marrow stromal cells alone developed osteoclastic function even in the presence of 1,25 dihydroxyvitamin D3. However, extensive excavation of the bone surface was observed, only in the presence of 1,25 dihydroxyvitamin D3, on bone slices on which bone marrow stromal cells were cocultured with low-density bone marrow cells or the hemopoietic cell line. Similar results were obtained when the bone marrow stromal cells were killed by glutaraldehyde fixation; 3T3 cells were unable to substitute for stromal cells. These results are strong evidence that osteoclasts derive from the hemopoietic stem cell and suggest that although mature osteoclasts possess neither receptors for nor responsiveness to 1,25 dihydroxyvitamin D3, the hormone induces osteoclastic function through a direct effect on hemopoietic cells rather than through some accessory cell in the bone marrow stroma. The failure of 3T3 cells, which enable differentiation of other hemopoietic progeny from this cell line, to induce osteoclastic differentiation suggests that bone marrow stroma possesses additional characteristics distinct from those that induce differentiation of other hemopoietic cells that are specifically required for osteoclastic differentiation.  相似文献   

4.
The significance of thymus cell chimerism in the induction and maintenance of tolerance was investigated. Mls-1b BALB/c mice were neonatally tolerized by the intravenous administration of either bone marrow (BM) cells or peritoneal cavity (PerC) cells from Mls-1b/a (BALB/c x AKR) F1 mice. Tolerance was long-lasting in the BM cell group, but transient in the PerC cell group, probably because PerC cells lack hemopoietic stem cells required for a continuous supply of tolerance-inducing cells. The degree of anti-Mls-1a responsiveness of these BALB/c thymus cells was correlated with the degree of intrathymic distribution of the inoculated F1 cells. The effect of BM cell inoculation, resulting in a year-long deletion of Mls-1a-reactive V beta 6-bearing T cells is in marked contrast to that of PerC cell inoculation which causes only a transient loss of V beta 6+ mature thymocytes (for about 1 week after birth). This functional profile of the tolerant state correlates well with the degree and persistence of the intrathymic presence of F1 type Ia+ cells. The long-lasting presence of donor-derived cells throughout the thymus tissue in the BM cell group is also in marked contrast to the early disappearance of Ia+ cells (within 2-3 weeks) from the cortex and then from the medulla in the PerC cell group, although these Ia+ cells were once spread throughout the thymus tissue 4 days after the tolerance-inducing cell inoculation. Taken together with a failure to induce consistent unresponsiveness to Mls-1a determinants in Mls-1b thymocytes regenerating in Mls-1a-thymic epithelial environments, all the above data indicate that intrathymic chimerism caused by hemopoietic stem cell-derived MHC-class II-bearing cells is a requisite for the induction and maintenance of unresponsiveness by means of clonal deletion in experimentally as well as naturally induced tolerance to Mls determinants.  相似文献   

5.
Alymphoplasia (aly) mice, a natural strain with a mutant NF-kappa B-inducing kinase (NIK) gene, manifest a unique phenotype; they lack lymph nodes and Peyer's patches, have a disturbed spleen architecture, and exhibit defects in both Ab and cellular immune responses. Although a stromal defect caused by impaired lymphotoxin-beta receptor signaling accounts for their abnormal lymphoid organogenesis, the exact mechanisms underlying the development of immunodeficiency in aly mice are poorly understood. We therefore investigated the contribution of hemopoietic cells with the aly NIK mutation to the development of immunodeficiency. Transfer of aly/aly bone marrow cells into aly/+ mice resulted in poorly developed B cell follicles and lack of support for the development of germinal centers and isotype switching, indicating that the hemopoietic cells of aly mice contain an autonomous defect. However, follicular dendritic cell clusters were maintained in the spleens of these bone marrow chimeras, suggesting that the lack of follicular dendritic cell clusters in aly mice is probably due to the stromal defect. The aly mice lacked marginal zone B cells in their spleens, and aly/aly B cells showed an impaired proliferative response after in vitro stimulation. IL-2 production by activated T cells was also impaired. By contrast, the dendritic cells of aly mice exhibited grossly normal development and function. Supporting the concept of an autonomous cell defect, Rel protein expression was altered in aly/aly spleens. Thus, the aly NIK mutation affects hemopoietic cell function in an intrinsic fashion and, together with the stromal defect, may contribute to the development of immunodeficiency in aly mice.  相似文献   

6.
We examined the long-term maintenance of multilineal hemopoiesis in a collagen gel culture of mouse bone marrow cells. When cells were inoculated into the gel, stromal cells formed foci that were composed of sinusoidlike capillary structures, fibroblastic cells, adipocytes and macrophages. Many small hemopoietic foci similar to granulocyte-macrophage colonies (CFU-GM) appeared within a week and disappeared after two weeks. Several large hemopoietic foci appeared after two to three weeks of culture, without a second challenge of marrow cells. These large hemopoietic foci were composed mainly of myeloid cells. Megakaryocytes and mast cells were also observed. When erythropoietin (EPO) was added to the culture at the beginning, the erythroid focus appeared after 3 weeks and the number of megakaryocytes was greater than that in the culture without EPO. However, when EPO was added to the cultures after 6 or 12 weeks, erythroid cells appeared after 1 week and the number of megakaryocytes increased. This hemopoiesis lasted more than 6 months.  相似文献   

7.
Following syngeneic or autotransplantation of hemopoietic tissue to a heterotopic location, bone formation has been observed to occur in the implanted tissue. the characteristics of the cell residing in hemopoietic tissue with bone forming potential (preosteoblast) are unknown. to define some properties of this cell, its response to X-irradiation and cyclophosphamide (CTX) was compared to the response of the hemopoietic stem cell. Adult, male rats were exposed to 900 R whole body X-irradiation or 220 mg/kg of intraperitoneal CTX. With either treatment the dose was sufficient to kill the animals by bone marrow failure. At intervals following the X-irradiation or CTX, hemopoietic tissue was examined for the presence of viable hemopoietic stem cells and preosteoblasts. Following X-irradiation, viable hemopoietic stem cells and preosteoblasts could not be detected. Following CTX these cells could be detected. It is suggested that in the rat CTX at 220 mg/kg, although causing death by bone marrow failure, does not reduce the population of the preosteoblast or hemopoietic stem cell as effectively as 900 R X-irradiation.  相似文献   

8.
Results of this study showed that lymphocytic choriomeningitis virus infection causes a marked activation of natural killer (NK) cells not only in the spleen but also in the bone marrow. This activity reached its peak at about day 3 of infection and declined after days 6 to 7. Enhanced NK cell activity was found to correlate with decreased receptivity for syngeneic stem cells in bone marrow and spleen, with the notable exception that decreased receptivity persisted longer in bone marrow. Treatment of infected recipients with anti-asialo GM1 (ganglio-N-tetraosylceramide) significantly increased the receptivity for syngeneic hemopoietic cells. These findings are consistent with the hypothesis that NK cell activation causes rejection of syngeneic stem cells, thus resulting in hemopoietic depression. To understand the mechanisms behind the prolonged decrease in bone marrow receptivity (and bone marrow function in the intact mouse) mentioned above, we followed the changes in the number of pluripotential stem cells (CFU-S) circulating in the peripheral blood and in endogenous spleen colonies in irradiated mice, the limbs of which were partially shielded. It was found that following a marked early decline, both parameters increased to normal or supranormal levels at about day 9 after infection. Because the bone marrow pool of CFU-S is only about 20% of normal at this time after infection, a marked tendency for CFU-S at this stage in the infection to migrate from the bone marrow to the spleen is suggested. It seems, therefore, that as NK cell activity declines, the spleen regains the ability to support growth of hemopoietic cells and the bone marrow resumes an elevated export of stem cells to the spleen. This diversion of hemopoiesis could explain both the long-standing deficiencies of the bone marrow compartment and the prolonged decrease in the receptivity of this organ.  相似文献   

9.
A rat thymic epithelial cell line IT45-R1 has been previously described as secreting soluble molecules that in vitro chemoattract rat hemopoietic precursor cells. The development of such an in vitro migration assay was based on the ability of cells to migrate across polycarbonate filters in Boyden chambers. In the present paper, by using the same strategy, we studied murine bone marrow cells capable of migrating in vitro toward IT45-R1 conditioned medium. The responding cells were shown to represent a minor bone marrow subpopulation characterized by a low capacity to incorporate tritiated thymidine in vitro (less than 10% of control). Moreover, this cell subset was considerably impoverished with respect to granulocyte-macrophage CFU (less than 7% of control) and pluripotent hemopoietic stem cells (less than 12% of control). Potential generation of T cells of donor-type in the lymphoid organs of irradiated recipients was measured by using C57BL/Ka Thy-1.1 and Thy-1.2 congenic mice. Thy-1.1 irradiated mice were injected intrathymically or intravenously with the selectively migrated cell subset of Thy-1.2 donor-type bone marrow cells. The use of an i.v. transfer route allowed us to show that these cells possess thymus-homing and colonization abilities. In a time-course study after intrathymic cell transfer, these migrated cells were able to generate Thy-1.2+ donor-type thymocytes represented by all cortical and medullary cell subsets in a single wave of repopulation from day 20 to day 30 after transfer, with a peak around days 23 to 25. The degree of repopulation closely resembled that seen with unfractionated bone marrow cells in terms of absolute numbers of donor cells per thymus (82% of control, 22 x 10(6) Thy-1.2+ cells) as well as in percent donor cells per thymus (105% of control). Thy-1.2+ cells were also detected in the lymph nodes and the spleens of reconstituted recipient mice. Taken together, these results support the idea that the supernatant of the established thymic epithelium IT45-R1 induces the migration of a murine bone marrow subset that contains hemopoietic stem cells already committed to the lymphoid lineage (i.e., pre-T cells).  相似文献   

10.
The ability of yolk sac and primary bone marrow cells of the quail to form hemopoietic colonies at 6 hours of incubation (i. e. before establishment of circulation) was studied in the bone marrow of 3-week sublethally irradiated chickens. The experiments were based on the possibility of differentiating between quail and chicken cells from the natural cell marker (Pheulgen-positive nucleolus). The number of hemopoietic colonies produced by cells transplanted from the primary bone marrow was three times greater than that consequent on transplantation of yolk sac cells. With the given dose of irradiation the bone marrow shows about 75% exogenous (quail) and 25% endogenous (chicken) hemopoietic colonies.  相似文献   

11.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

12.
The ontogeny of hemopoietic cells which contain the enzyme terminal deoxynucleotidyl transferase (TdT) was studied in rats and mice. During fetal life, TdT-positive cells were first detected in the thymus, where they appeared on or about day 17 of gestation. TdT-positive cells were not found in fetal liver, spleen, or bone marrow, but appeared in bone marrow and spleen on the day after birth. In the rat, peak levels of TdT-positive cells were attained at 3 to 4 weeks of age in thymus, bone marrow, and spleen, accounting for 67, 3.9, and 2.3% of nucleated cells, respectively. The percentages of TdT-positive cells in thymus and bone marrow decreased gradually thereafter, whereas, TdT-positive cells in spleen were no longer detectable by 7 weeks of age. Normal percentages of TdT-positive cells were found in bone marrow and spleen from neonatally thymectomized rats and congenitally athymic (nu/nu) mice. Dexamethasone treatment resulted in a marked decrease in TdT-positive cells. The results are discussed with respect to the putative role of TdT-positive hemopoietic cells as thymocyte progenitors.  相似文献   

13.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

14.
An immunofluorescent study of hemopoietic organs in xenogenic (mouse-rat) radiation chimaeras has been carried out by means of specific antiserum against hemopoietic cells of the rat bone marrow. The presence of donor cells was tested at different times after the transplantation in the bone marrow, spleen, lymph nodes, thymus and liver of radiochimaeras. The transplanted cells were shown to populate all hemopoietic organs of the recipient, first of all tissues of the bone marrow type and, then, lymphoid organs. The donor (bone marrow) origin of the extramedullar foci of hemopoiesis in the liver was established.  相似文献   

15.
T Shirota  M Tavassoli 《Blood cells》1992,18(2):197-214
The endothelium of bone marrow sinuses is a continuous layer which is selective in its cellular transport. It is not known how selective and massive seeding of hemopoietic progenitor cells after intravenous transplantation of marrow cells occurs. We postulate that the conditioning irradiation could disrupt the endothelial barrier, thus permitting the "homing" of progenitor cells to occur. To demonstrate this phenomenon, we irradiated mice with doses ranging from 100-2000 cGy-total body and studied perfusion-fixed marrow by transmission electron microscopy. The major finding was sloughing and denudation of plasma membrane, particularly on the luminal side of endothelium. Membrane vesiculation was also frequently seen in this border. Moreover, dilatation of the perinuclear space and rough endoplasmic reticulum was commonplace and testified to instability and fragility of the membrane system. Focal cytoplasmic swelling of endothelium was seen reflecting increased permissiveness of the endothelial barrier. Endocytosis and phagocytosis were increased in the marrow; and the endothelium, normally quiescent with regard to phagocytosis, was now overtly phagocytic. A dipogenecity of the adventitial layer was increased as hemopoietic function of marrow decreased. The end result of membrane alterations in the endothelium was the appearance of discontinuities in these cells, which form the essential element of bone marrow-blood barrier. Consequent to these discontinuities, the permissiveness of the endothelial barrier was enhanced and those cellular elements, such as mature, nonreticulated erythrocytes that are normally confined to the vascular space, now appeared in large number in the hemopoietic compartment. With low doses, these findings were transient and repair set in by 1-2 weeks. With higher doses, total disruption of marrow-blood barrier occurred and the process did not seem to be repairable. We conclude that the conditioning irradiation before bone marrow transplantation is essential in disrupting the endothelial barrier and permitting large-scale entry of transplanted cells into the hemopoietic compartment.  相似文献   

16.
Current evidence indicates an immunostimulating role for complex carbohydrates, i.e., polysaccharides, from several plant sources. In the present work, we determined the specific in vivo effects, with time of administration, of one such compound, a neutral arabinogalactan from larch not only on immune (lymphoid) cells, but also on natural killer (NK) lymphoid cells, as well as a variety of other hemopoietic cells in both the bone marrow and spleen of healthy, young adult mice. The latter were injected daily (i.p.) with arabinogalactan (500 microg in 0.1 ml pH 7.2 phosphate buffered saline-PBS) for 7 or 14 days. Additional, aged (1 1/2-2 yr) mice were similarly injected for 14 days only. Control mice were given the PBS vehicle in all cases, following the above injection regimen. Animals from all groups were sampled 24 h after the final injection and the immune and hemopoietic cell populations in the bone marow and spleen were assessed quantitatively. The results indicated that immediately following either 7 or 14 days of arabinogalactan administration to young, adult mice, lymphoid cells in the bone marrow were significantly decreased (p < 0.004; p < 0.001, respectively) relative to controls but remained unchanged at both time intervals in the spleen. NK cells, after 7 days of arabinogalactan exposure, were also decreased significantly in the bone marrow (p < 0.02), but unchanged in the spleen. After 14 days' exposure to the polysaccharide, NK cells in the bone marrow had returned to normal (control) levels, but were increased in the spleen (p < 0.004) to levels greater than 2-fold that of control. Among other hemopoietic cell lineages, none was influenced in the bone marrow or spleen by one-week administration of arabinogalactan; however, after two-week exposure, precursor myeloid cells and their mature (functional) progeny (granulocytes), were significantly reduced in the spleen (p < 0.043; p < 0.006, respectively), as were splenic monocytes (p < 0.001). These lineages in the bone marrow, however, remained steadfastly unaltered even after 14 days of continuous exposure to the agent. Of the vast cascade of cytokines induced in the presence of this polysaccharide, it appears that immunopoiesis- and hemopoiesis-inhibiting ones are most prevalent during at least the first two weeks of daily exposure.  相似文献   

17.
The maintenance of hemopoietic precursors in long-term liquid bone marrow cultures (LTBMC) is associated with the presence of an adherent stromal layer composed of heterogeneous cell populations. We have used a culture assay to promote the growth of one of its cellular components and characterize its properties. Freshly obtained bone marrow cells and cells derived from the adherent layer of LTBMC were grown in methylcellulose-clotted plasma in the presence of phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM), hydrocortisone (HC), and citrated normal human plasma. Both sources contained cells (CFU-RF) that gave rise to colonies of cells with a reticulofibroblastoid appearance. In the presence of HC, most colonies contained lipid-laden cells. Colonies could be further propagated as adherent layers when transferred into liquid cultures. These cells produced laminin, fibronectin, and collagen types I, III, IV, and V. They were negative for Von Willebrand factor VIII. The ability to synthesize laminin and collagen type IV distinguished these cells from a population of previously described bone marrow fibroblasts (CFU-F). The relationship of CFU-RF to hemopoietic precursors was investigated using patients with chronic myeloid leukemia and bone marrow transplant recipients. Cells within CFU-RF-derived colonies were uniformly negative for the Philadelphia chromosome, thus making it unlikely that they belonged to the malignant hemopoietic clone. CFU-RF-derived colonies in bone marrow transplant recipients were found to be exclusively of host origin. Both observations support the view that CFU-RF is not part of the repertoire of hemopoietic stem cells.  相似文献   

18.
This paper presents literature and author's own data demonstrating that bone marrow contains determined osteogenic precursor cells with high potential to differentiation. They are stem cells of the bone and belong to the stromal cell line of the bone marrow which is histogenetically independent of hemopoietic cells. The paper presents detailed analysis of bone marrow stromal cells (CFUf) as well as of their osteogenic properties and requirements in growth factors. In conclusion mutual growth-stimulating interactions in the system of hemopoietic stromal cells are reviewed.  相似文献   

19.
Stromal stem cells (CFU-f assay) from hemopoietic organs of fetuses, in contrast to adult animals, exhibit a high proliferation activity. This implies that these CFU-f are radiosensitive and potential target cells after radioactive contamination of fetuses. Furthermore, the percentage of CFU-f in DNA synthesis is correlated with the hemopoietic activity in liver, spleen, and bone marrow. As hemopoiesis starts, high numbers of CFU-f are in S phase. In fetal liver, spleen, and bone marrow, values of 70, 43, and 58%, respectively, are reached. As hemopoietic activity decreases in liver and stabilizes in spleen and bone marrow, mitotic activity of these stromal stem cells becomes undetectable.  相似文献   

20.
Extrachromosomal circular DNAs from murine hemopoietic tissue cells   总被引:5,自引:0,他引:5  
Extrachromosomal circular DNA complexes from cells of murine hemopoietic organs, bone marrow, thymus, spleen, and lymph nodes were examined by mica-press-adsorption method (H. Yamagishi, T. Kunisada, and T. Tsuda, 1982, Plasmid 8, 299-306). They showed wide size distribution, from 0.3 to 10 micron. The large-size DNAs of more than 1 micron (3.1 kb) in contour length were more abundant in bone marrow and thymus than they were in spleen and lymph nodes. The appearance of the large size DNAs was examined on splenocytes of athymic nude mice during ontogeny. The large-size DNAs first became detectable after 2 weeks of age and the amount increased thereafter until 9 weeks of age. It appears that large-size circular DNAs appear during differentiation from the hemopoietic stem cells into several descendent cells. Possible immunological implications for the appearance of extrachromosomal circular DNAs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号