首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jones AK  Lenz O  Strack A  Buhrke T  Friedrich B 《Biochemistry》2004,43(42):13467-13477
Biosynthesis of the NiFe hydrogenase active site is a complex process involving the action of the Hyp proteins: HypA-HypF. Here we investigate the mechanism of NiFe site biosynthesis in Ralstonia eutropha by examining the interactions between HypC, HypD, HypE, and HypF1. Using an affinity purification procedure based on the Strep-tag II, we purified HypC and HypE from different genetic backgrounds as complexes with other hydrogenase-related proteins and characterized them using immunological analysis. Copurification of HypC and HoxH, the active site-containing subunit of the soluble hydrogenase in R. eutropha, from several different genetic backgrounds suggests that this complex forms early in the maturation process. With respect to the Hyp proteins, it is shown that HypE and HypF1 formed a stable complex both in vivo and in vitro. Furthermore, HypC and HypD functioned as a unit. Together, they were able to interact with HypE to form a range of complexes probably varying in stoichiometry. The HypC/HypD/HypE complexes did not involve HypF1 but appeared to be more stable when HypF1 was also present in the cells. We hypothesize that HypF1 is able to modify some component of the HypC/HypD/HypE complex. Since we have also seen that HypF1 and HypE form a complex, it is likely that HypF1 modifies HypE. On the basis of these results, we propose a complete catalytic cycle for HypE. First, it is modified by HypF1, and then it can form a complex with HypC/HypD. This activated HypE/HypC/HypD complex could then decompose by donating active site components to the immature hydrogenase and regenerate unmodified HypE.  相似文献   

2.
Carbamoylphosphate has been shown to be the educt for the synthesis of the CN ligands of the NiFe metal centre of hydrogenases from Escherichia coli. In the absence of carbamoylphosphate, cells accumulate a complex of two hydrogenase maturation proteins, namely HypC and HypD for the synthesis of hydrogenase 3. A procedure for the purification of wild-type HypD protein or of a biologically active derivative carrying the Strep-tagII((R)) at the N terminus has been developed. HypD is a monomeric protein possessing about 4 mol of iron per mol of protein. Electron paramagnetic resonance (EPR) and Mossbauer spectroscopy demonstrated that the iron is present as a diamagnetic [4Fe-4S](2+) cluster. The complex between HypC and HypD can be cross-linked by a number of thiol and primary amine-specific linkers. When HypD and HypC were overproduced side-by-side with HypE, the HypC-HypD complex contained substoichiometric amounts of HypE whose proportion in the complex could be augmented when HypF was also overproduced. HypE trapped in this complex could be carbamoylated by protein HypF and after dehydration transferred the cyano group to the HypC-HypD part of the complex. Free HypC and HypD were not cyanated by HypE-CN. An active HypC-HypD complex from anaerobic cells was inactivated by incubation with K(3)[Fe(CN)(6)] but not with K(4)[Fe(CN)(6)]. The results suggest the existence of a dynamic complex between the hydrogenase maturation proteins HypD, HypC, HypE and HypF, which is the site of ligand biosynthesis and attachment to the iron atom of the NiFe site in hydrogenase 3.  相似文献   

3.
The biosynthesis of [NiFe] hydrogenases is a complex process that requires the function of the Hyp proteins HypA, HypB, HypC, HypD, HypE, HypF, and HypX for assembly of the H(2)-activating [NiFe] site. In this study we examined the maturation of the regulatory hydrogenase (RH) of Ralstonia eutropha. The RH is a H(2)-sensing [NiFe] hydrogenase and is required as a constituent of a signal transduction chain for the expression of two energy-linked [NiFe] hydrogenases. Here we demonstrate that the RH regulatory activity was barely affected by mutations in hypA, hypB, hypC, and hypX and was not substantially diminished in hypD- and hypE-deficient strains. The lack of HypF, however, resulted in a 90% decrease of the RH regulatory activity. Fourier transform infrared spectroscopy and the incorporation of (63)Ni into the RH from overproducing cells revealed that the assembly of the [NiFe] active site is dependent on all Hyp functions, with the exception of HypX. We conclude that the entire Hyp apparatus (HypA, HypB, HypC, HypD, HypE, and HypF) is involved in an efficient incorporation of the [NiFe] center into the RH.  相似文献   

4.
Carbamoyl phosphate (CP) has been implicated as an educt for the synthesis of the CO and CN ligands of the metal centre of [NiFe]-hydrogenases in Escherichia coli, since CP synthetase mutants (carAB) are unable to generate active hydrogenases due to a block in enzyme maturation. Citrulline, when added to the growth medium in high concentrations, compensated for the phenotype of the mutants. It is now shown that overexpression of the argI gene lowered the effective concentration of citrulline, thus proving that the amino acid serves as a source for CP. The DeltaCarAB mutant accumulated a complex consisting of the hydrogenase maturation proteins HypC and HypD. This complex was resolved upon citrulline addition and followed-up by the appearance of a complex between HypC and the precursor of the large subunit of hydrogenase 3, preHycE. In the absence of the hycE gene, the HypC-HypD complex did not disappear upon addition of citrulline but developed into a form migrating slower in a non-denaturing polyacrylamide gel, providing strong evidence for the notion that the HypC-HypD complex is the intermediate in hydrogenase maturation where CP or its products are added to the iron atom of the metal centre. This step precedes nickel insertion, since extracts of carAB cells that had been cultivated in the absence of citrulline are unable to process preHycE after the addition of nickel. Complex formation between HypC and HypD, and between HypC and preHycE display dependence on identical primary structure elements of HypC. On the basis of the results, a cycle of HypC activity is proposed whose function is to transfer the iron atom that has been liganded at the HypC-HypD complex to the precursor of the large hydrogenase subunit.  相似文献   

5.
The hypCD genes, encoding the counterparts of mesophilic proteins involved in the maturation of [NiFe] hydrogenases, were isolated from the hyperthermophilic archaeon Thermococcus litoralis. The deduced gene products showed 30-40% identity to the corresponding mesophilic proteins. HypC and HypD were synthesized by the T7 expression system. Heterologous complementation experiments were done in Escherichia coli and Ralstonia eutropha strains lacking functionally active hypC and hypD genes. Only the cytoplasmic hydrogenase of R. eutropha could be processed by HypD from T. litoralis. This was the first demonstration of mesophilic hydrogenase processing using a hyperthermophilic archaeal accessory protein to produce an active enzyme.  相似文献   

6.
Assembly of the active site of the [NiFe]-hydrogenase enzymes involves a multi-step pathway and the coordinated activity of many accessory proteins. To analyze complex formation between these factors in Escherichia coli, they were genomically tagged and native multi-protein complexes were isolated. This method validated multiple interactions reported in separate studies from several organisms and defined a new complex containing the putative chaperone HybG and the large subunit of hydrogenase 1 or 2. The complex also includes HypE and HypD, which interact with each other before joining the larger complex.  相似文献   

7.
Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)2(CO) entity of [NiFe] hydrogenase.  相似文献   

8.
[NiFe] hydrogenases are key enzymes for the energy and redox metabolisms of different microorganisms. Synthesis of these metalloenzymes involves a complex series of biochemical reactions catalyzed by a plethora of accessory proteins, many of them required to synthesize and insert the unique NiFe(CN)2CO cofactor. HypC is an accessory protein conserved in all [NiFe] hydrogenase systems and involved in the synthesis and transfer of the Fe(CN)2CO cofactor precursor. Hydrogenase accessory proteins from bacteria-synthesizing hydrogenase in the presence of oxygen include HupK, a scaffolding protein with a moderate sequence similarity to the hydrogenase large subunit and proposed to participate as an intermediate chaperone in the synthesis of the NiFe cofactor. The endosymbiotic bacterium Rhizobium leguminosarum contains a single hydrogenase system that can be expressed under two different physiological conditions: free-living microaerobic cells (∼12 μm O2) and bacteroids from legume nodules (∼10–100 nm O2). We have used bioinformatic tools to model HupK structure and interaction of this protein with HypC. Site-directed mutagenesis at positions predicted as critical by the structural analysis have allowed the identification of HupK and HypC residues relevant for the maturation of hydrogenase. Mutant proteins altered in some of these residues show a different phenotype depending on the physiological condition tested. Modeling of HypC also predicts the existence of a stable HypC dimer whose presence was also demonstrated by immunoblot analysis. This study widens our understanding on the mechanisms for metalloenzyme biosynthesis in the presence of oxygen.  相似文献   

9.
Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-Å resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of ~400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.  相似文献   

10.
Escherichia coli HypC plays an important role in the maturation process of the pre-maturated HycE, the large subunit of hydrogenase 3. It serves as an iron transfer as well as a chaperone protein during the maturation process of pre-HycE, and interacts with both HypD and HycE. The N-terminal cysteine residue of HypC plays a key role in the protein-protein interactions. Here, we present the three-dimensional structure of E. coli HypC, the first solution structure of HupF/HypC family. Our result demonstrates that E. coli HypC consists of a typical OB-fold beta-barrel with two C-terminal helixes. Sequence alignment and structural comparison reveal that the hydrophobic region on the surface of E. coli HypC, as well as the highly flexible C-terminal helixes, may involve in the interactions of E. coli HypC with other proteins.  相似文献   

11.
Nickel delivery during maturation of Escherichia coli [NiFe] hydrogenase 3 includes the accessory proteins HypA, HypB, and SlyD. Although the isolated proteins have been characterized, little is known about how they interact with each other and the hydrogenase 3 large subunit, HycE. In this study the complexes of HypA and HycE were investigated after modification with the Strep-tag II. Multiprotein complexes containing HypA, HypB, SlyD, and HycE were observed, consistent with the assembly of a single nickel insertion cluster. An interaction between HypA and HycE did not require the other nickel insertion proteins, but HypB was not found with the large subunit in the absence of HypA. The HypA-HycE complex was not detected in the absence of the HypC or HypD proteins, involved in the preceding iron insertion step, and this interaction is enhanced by nickel brought into the cell by the NikABCDE membrane transporter. Furthermore, without the hydrogenase 1, 2, and 3 large subunits, complexes between HypA, HypB, and SlyD were observed. These results support the hypothesis that HypA acts as a scaffold for assembly of the nickel insertion proteins with the hydrogenase precursor protein after delivery of the iron center. At different stages of the hydrogenase maturation process, HypA was observed at or near the cell membrane by using fluorescence confocal microscopy, as was HycE, suggesting membrane localization of the nickel insertion event.  相似文献   

12.
The large subunit HoxC of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha was purified without its small subunit. Two forms of HoxC were identified. Both forms contained iron but only substoichiometric amounts of nickel. One form was a homodimer of HoxC whereas the second also contained the Ni-Fe site maturation proteins HypC and HypB. Despite the presence of the Ni-Fe active site in some of the proteins, both forms, which lack the Fe-S clusters normally present in hydrogenases, cannot activate hydrogen. The incomplete insertion of nickel into the Ni-Fe site provides direct evidence that Fe precedes Ni in the course of metal center assembly.  相似文献   

13.
There are at least two membrane-bound (HynSL and HupSL) and one soluble (HoxEFUYH) [NiFe] hydrogenases in Thiocapsa roseopersicina BBS, a purple sulfur photosynthetic bacterium. Genes coding for accessory proteins that participate in the biosynthesis and maturation of hydrogenases seem to be scattered along the chromosome. Transposon-based mutagenesis was used to locate the hydrogenase accessory genes. Molecular analysis of strains showing mutant phenotypes led to the identification of hupK (hoxV ), hypC1, hypC2, hypD, hypE, and hynD genes. The roles of hynD, hupK and the two hypC genes were investigated in detail. The putative HynD was found to be a hydrogenase-specific endoprotease type protein, participating in the maturation of the HynSL enzyme. HupK plays an important role in the formation of the functionally active membrane-bound [NiFe] hydrogenases, but not in the biosynthesis of the soluble enzyme. In-frame deletion mutagenesis showed that HypC proteins were not specific for the maturation of either hydrogenase enzyme. The lack of either HypC protein drastically reduced the activity of every hydrogenase. Hence both HypCs might participate in the maturation of [NiFe] hydrogenases. Homologous complementation with the appropriate genes substantiated the physiological roles of the corresponding gene products in the H2 metabolism of T. roseopersicina.  相似文献   

14.
As a remarkable structural feature of hydrogenase active sites, [NiFe]-hydrogenases harbor one carbonyl and two cyano ligands, where HypE and HypF are involved in the biosynthesis of the nitrile group as a precursor of the cyano groups. HypF catalyzes S-carbamoylation of the C-terminal cysteine of HypE via three steps using carbamoylphosphate and ATP, producing two unstable intermediates: carbamate and carbamoyladenylate. Although the crystal structures of intact HypE homodimers and partial HypF have been reported, it remains unclear how the consecutive reactions occur without the loss of unstable intermediates during the proposed reaction scheme. Here we report the crystal structures of full-length HypF both alone and in complex with HypE at resolutions of 2.0 and 2.6 Å, respectively. Three catalytic sites of the structures of the HypF nucleotide- and phosphate-bound forms have been identified, with each site connected via channels inside the protein. This finding suggests that the first two consecutive reactions occur without the release of carbamate or carbamoyladenylate from the enzyme. The structure of HypF in complex with HypE revealed that HypF can associate with HypE without disturbing its homodimeric interaction and that the binding manner allows the C-terminal Cys-351 of HypE to access the S-carbamoylation active site in HypF, suggesting that the third step can also proceed without the release of carbamoyladenylate. A comparison of the structure of HypF with the recently reported structures of O-carbamoyltransferase revealed different reaction mechanisms for carbamoyladenylate synthesis and a similar reaction mechanism for carbamoyltransfer to produce the carbamoyl-HypE molecule.  相似文献   

15.
The H2-splitting active site of [NiFe] hydrogenases is tightly bound to the protein matrix via four conserved cysteine residues. In this study, the nickel-binding cysteine residues of HoxC, the large subunit of the H2-sensing regulatory hydrogenase (RH) from Ralstonia eutropha, were replaced by serine. All four mutant proteins, C60S, C63S, C479S, and C482S, were inactive both in H2 sensing and H2 oxidation and did not adopt the native oligomeric structure of the RH. Nickel was bound only to the C482S derivative. The assembly of the [NiFe] active site is a complex process that requires the function of at least six accessory proteins. Among these proteins, HypC has been shown to act as a chaperone for the large subunit during the maturation process. Immunoblot analysis revealed the presence of a strong RH-dependent HypC-specific complex in extracts containing the C60S, C63S, and C482S derivatives, pointing to a block in maturation for these mutant proteins. The lack of this complex in the extract containing C479S indicates that this specific cysteine residue might be crucial for the interaction between HoxC and HypC.This work is dedicated to Prof. H.G. Schlegel on the occasion of his 80th birthday.  相似文献   

16.
[NiFe]-hydrogenases are multimeric proteins. The?large subunit contains the NiFe(CN)(2)CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN)(2)CO active center requires six Hyp accessory proteins. The synthesis of the CN(-) ligands is?catalyzed by the combined actions of HypF and?HypE using carbamoylphosphate as a substrate.?We report the structure of Escherichia coli HypF(92-750) lacking the N-terminal acylphosphatase domain. HypF(92-750) comprises the novel Zn-finger domain, the nucleotide-binding YrdC-like domain, and the Kae1-like universal domain, also binding a nucleotide and a Zn(2+) ion. The two nucleotide-binding sites are sequestered in an internal cavity, facing each other and separated by ~14??. The YrdC-like domain converts carbamoyl moiety to a carbamoyl adenylate intermediate, which is channeled to the Kae1-like domain. Mutations within either nucleotide-binding site compromise hydrogenase maturation but do not affect the carbamoylphosphate phosphatase activity.  相似文献   

17.
Paschos A  Glass RS  Böck A 《FEBS letters》2001,488(1-2):9-12
The iron of the binuclear active center of [NiFe]-hydrogenases carries two CN and one CO ligands which are thought to confer to the metal a low oxidation and/or spin state essential for activity. Based on the observation that one of the seven auxiliary proteins required for the synthesis and insertion of the [NiFe] cluster contains a sequence motif characteristic of O-carbamoyl-transferases it was discovered that carbamoyl phosphate is essential for formation of active [NiFe]-hydrogenases in vivo and is specifically required for metal center synthesis suggesting that it is the source of the CO and CN ligands. A chemical path for conversion of a carbamoyl group into cyano and carbonyl moieties is postulated  相似文献   

18.
The class of [NiFe]–hydrogenases is characterized by a bimetallic cofactor comprising low–spin nickel and iron ions, the latter of which is modified with a single carbon monoxide (CO) and two cyanide (CN) molecules. Generation of these ligands in vivo requires a complex maturation apparatus in which the HypC–HypD complex acts as a ‘construction site’ for the Fe–(CN)2CO portion of the cofactor. The order of addition of the CO and CN ligands determines the ultimate structure and catalytic efficiency of the cofactor; however much debate surrounds the succession of events. Here, we present an FT–IR spectroscopic analysis of HypC–HypD isolated from a hydrogenase–competent wild–type strain of Escherichia coli. In contrast to previously reported samples, HypC–HypD showed spectral contributions indicative of an electron–rich Fe–CO cofactor, at the same time lacking any Fe–CN signatures. This immature iron site binds external CO and undergoes oxidative damage when in contact with O2. Binding of CO protects the site against loss of spectral features associated with O2 damage. Our findings strongly suggest that CO ligation precedes cyanation in vivo. Furthermore, the results provide a rationale for the deleterious effects of O2 on in vivo cofactor biosynthesis.  相似文献   

19.
Thioredoxin-mediated light regulation in plant chloroplasts involves a unique class of disulfide reductases that catalyze disulfide reduction in two one-electron steps using a [2Fe–2S] ferredoxin as the electron donor and an active site comprising a [4Fe–4S] cluster and a redox-active disulfide. This review summarizes structural and spectroscopic studies of ferredoxin:thioredoxin reductase (FTR) and a chemically modified form, termed NEM–FTR, which provides a stable analog of the one-electron reduced catalytic intermediate. Detailed spectroscopic characterization of FTR and NEM–FTR using absorption, EPR, electron–nuclear double resonance, variable-temperature magnetic circular dichroism, resonance Raman and Mössbauer spectroscopies indicate that the one-electron reduced catalytic intermediate involves two-electron disulfide reduction coupled with one-electron cluster oxidation of a [4Fe–4S]2+ cluster to yield a unique type of S= 1/2 [4Fe–4S]3+ cluster with two cysteine residues ligated at a specific Fe site. The results provide the basis for a novel mechanism for disulfide cleavage in two one-electron steps involving site-specific [4Fe–4S] cluster chemistry. A similar mechanism is proposed for direct [4Fe–4S]-mediated cleavage of the CoM–S–S–CoB heterodisulfide in methanogenic archaea by heterodisulfide reductases.  相似文献   

20.
The bidirectional [NiFe] hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 was purified to apparent homogeneity by a single affinity chromatography step using a Synechocystis mutant with a Strep-tag II fused to the C terminus of HoxF. To increase the yield of purified enzyme and to test its overexpression capacity in Synechocystis the psbAII promoter was inserted upstream of the hoxE gene. In addition, the accessory genes (hypF, C, D, E, A, and B) from Nostoc sp. PCC 7120 were expressed under control of the psbAII promoter. The respective strains show higher hydrogenase activities compared with the wild type. For the first time a Fourier transform infrared (FTIR) spectroscopic characterization of a [NiFe] hydrogenase from an oxygenic phototroph is presented, revealing that two cyanides and one carbon monoxide coordinate the iron of the active site. At least four different redox states of the active site were detected during the reversible activation/inactivation. Although these states appear similar to those observed in standard [NiFe] hydrogenases, no paramagnetic nickel state could be detected in the fully oxidized and reduced forms. Electron paramagnetic resonance spectroscopy confirms the presence of several iron-sulfur clusters after reductive activation. One [4Fe4S]+ and at least one [2Fe2S]+ cluster could be identified. Catalytic amounts of NADH or NADPH are sufficient to activate the reaction of this enzyme with hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号