首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Localization of carbonic anhydrase in legume nodules   总被引:2,自引:0,他引:2  
Extracts of the central infected zone and the surrounding cortex of nodules from Lupinus angustifolius L., Vigna unguiculata L. (Walp), Pisum sativum L., Phaseolus vulgaris L., Vicia faba L. and Medicago sativa L. contained significant activities of carbonic anhydrase (CA). Immunoassay of extracts using antisera to a putative nodule CA (Msca1) cloned from M. sativa also indicated expression in both tissue types. Quantitative confocal microscopy using laser scanning imaging and a fluorescent CA‐specific probe (5‐dimethylaminonaphthalene‐1‐sulfonamide [DNSA]) localized expression to the infected cells in the central zone tissue and a narrow band of 2–3 files of cells in the cortical tissue that corresponded to the inner cortex. In the infected cells, the enzyme activity was distributed evenly in the cytosol, but in the inner cortical cells, it was restricted to the periphery – possibly to the plasma membrane or cell wall. The functions of CA in these two tissues are considered in relation to the carbon metabolism of nodules and the participation of the inner cortex in the regulation of gaseous diffusive resistance.  相似文献   

2.
Synopsis The localization of carbonic anhydrase activity in the vertebrate nephron has been examined with particular reference to the proximal tubule and collecting duct. In all species studied, activity was present in the proximal tubular epithelium. In the pigeon and turtle, distinctive and similar patterns of staining were observed in the glomerulus and first portion of the proximal tubule. In the rat and rhesus monkey, the entire proximal tubule exhibited activity; in these species it has been shown previously with micropuncture techniques that there is a high absorptive capacity of this nephron segment for bicarbonate. In contrast, large portions of the dog proximal tubule were inactive; similar studies in this animal have shown tubular concentrations of bicarbonate only slightly lower than plasma levels. In the rat and dog, the entire length of the collecting duct was diffusely and intensely active; in contrast, pigeon collecting duct showed no activity. An alternating pattern of inactive and intensely active cells was observed in the collecting ducts of the toad, turtle, rabbit and monkey. A similar pattern has been described in the turtle and toad bladder, tissues utilized forin vitro studies of ion transport and H+ secretion.  相似文献   

3.
Embryonic and fetal pig gonads were obtained immediately after the sow's slaughter at 18, 21, 25, 28, 30, 36, 55, 63, 80 or 108 days of pregnancy. Semithin plastic sections were incubated for localization of carbonic anhydrase (CA) activity using a cobalt precipitation technique. In the embryonic gonad, CA activity was only present in the coelomic epithelium and in the endothelium of scattered blood capillaries. In the early testes (30-36 days) the CA activity was also localized in the cytoplasm of the sustentacular cells. Both spermatogonia and the developing interstitial cells were negative. At later stages, the testes presented a clear CA cytoplasmic activity in the Sertoli cells and a membrane-bound activity in the peritubular capillaries, resembling the enzymatic localization in the adult. The epithelium of the rete testis had a clear membrane-bound CA activity. CA histochemistry is useful as a marker for topographical studies of Sertoli cells during the prenatal development in the pig.  相似文献   

4.
5.
We examined the histochemical localization of carbonic anhydrase (CA) in Bowman's glands by light and electron microscopy. Neither CAI nor CAII was detected immunohistochemically in the duct cells. However, by enzyme histochemistry the duct cells revealed electron-dense precipitates demonstrative of CA in the microvilli and intercellular digitations. The reaction product was also noted in small vesicles in the cytoplasm of duct cells. In cells of the acini, the well-developed short microvilli, basolateral cell membrane, and mitochondria along the basolateral membrane showed strong deposits indicating CA activity. Dense reaction product of CA was also detected in a small core within the electron-lucent granules of the secretory cells, although CAI and CAII were not detected by immunostaining in the secretory granules. Although the functional significance of CA in Bowman's glands is obscure, the enzyme may play a role in regulation of pH and ion balance in the mucous layer covering the olfactory epithelium. The presence of CA activity in the ducts suggests that these structures are not simple tubes serving as a conduit for secretory substances but participate in modifying the luminal content by secreting CA. (J Histochem Cytochem 47:1525-1531, 1999)  相似文献   

6.
7.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

8.
9.
The relationship between density and location of zooxanthellae and levels of carbonic anhydrase (CA) activity was examined in Cassiopea xamachana. In freshly collected symbiotic animals, high densities of zooxanthellae corresponded with high levels of CA activity in host bell and oral arm tissues. Bleaching resulted in a significant loss of zooxanthellae and CA activity. Recolonization resulted in full restoration of zooxanthellar densities but only partial restoration of CA activity. High levels of CA activity were also seen in structures with inherently higher zooxanthellar densities, such as oral arm tissues. Similarly, the oral epidermal layer of bell tissue had significantly higher zooxanthellar densities and levels of CA activity than did aboral bell tissues. Fluorescent labeling, using 5-dimethylaminonapthalene-1-sulfonamide (DNSA) also reflected this tight-knit relationship between the presence and density of zooxanthellae, as DNSA-CA fluorescence intensity was greatest in host oral epithelial cells directly overlying zooxanthellae. However, the presence and density of zooxanthellae did not always correspond with enzyme activity levels. A transect of bell tissue from the margin to the manubrium revealed a gradient of CA activity, with the highest values at the bell margin and the lowest at the manubrium, despite an even distribution of zooxanthellae. Thus, abiotic factors may also influence the distribution of CA and the levels of CA activity.  相似文献   

10.
We describe the synthesis of Bodipy 558/568-modified acetazolamide, a fluorescent inhibitor of carbonic anhydrase and its use to localize the enzyme in living cells. The modified acetazolamide, with its specific sulfonamide group intact, labeled cells at concentrations as low as 10(-9) M, with a minimal loading time of 5 min. The staining was decreased by 57.4% by preincubating cells with unaltered acetazolamide (1:100) or with trifluoromethane sulfonamide, 6-ethoxyzolamide, and 5-(3-hydroxybenzoyl)-thiophene-2-sulfonamide. The efficacy of the inhibitor was unchanged by the fluorescent label, as determined by an acridine orange assay that detects acidification of osteoclasts, the cell model used in this study. This compound should prove to be useful for studying carbonic anhydrase in many organisms because of the high degree of conservation of the active site of this enzyme. (J Histochem Cytochem 47:545-550, 1999)  相似文献   

11.
Radioimmunoassay of carbonic anhydrase III in rat tissues.   总被引:1,自引:2,他引:1       下载免费PDF全文
A specific and sensitive radioimmunoassay for the rat carbonic anhydrase III isoenzyme was developed. High concentrations of carbonic anhydrase III were detected in soleus muscle and male liver. Female liver and other skeletal muscles contained significantly lower concentrations, and only trace amounts were found in heart, prostate, kidney, brain, plasma, urine and, possibly, erythrocytes.  相似文献   

12.
Carbonic anhydrase (CA) inhibition reduces NaCl absorption in rat distal ileum, a pH-sensitive, low CA activity tissue, and in distal colon, a CO(2)-sensitive, high CA activity tissue. We hypothesized that CA plays a non-catalytic role in NaCl absorption in these segments. Unidirectional fluxes of Na(+) and Cl(-), and total HCO(3)(-) generation (estimated as the sum of radiolabeled HCO(3)(-) and CO(2) produced from glucose) were measured in Ussing chambers in nominally CO(2), HCO(3)(-)-free HEPES Ringer. Measurements were made in the presence and absence of 0.1 mM methazolamide, a membrane-permeant CA inhibitor. Ringer pH reduction from 7.6 to 7.1 stimulated ileal but not colonic Na(+) and Cl(-) absorption. In the ileum, methazolamide reduced J(ms)(Na) and J(ms)(Cl) and caused net Cl(-) secretion at pH 7.6, and prevented the stimulatory effect of lowering pH. In the colon, methazolamide reduced Na(+) and Cl(-) absorption at pH 7.6. Total HCO(3)(-) generation was minimal in HEPES at pH 7.6 and 7.1 in both segments, was minimally affected by methazolamide, and did not account for the changes in Cl(-) absorption caused by pH or methazolamide. We conclude that CA plays a role in ileal and colonic NaCl absorption independent of its catalytic function.  相似文献   

13.
Carbonic anhydrase (CA) IV was purified to homogeneity from rat lung microsomal and plasma membranes. The single N-terminal amino acid sequence showed 55% similarity to that reported for human CA IV. A monospecific antibody to the 39-kDa rat enzyme that cross-reacts on Western blots with CA IVs from other mammalian species was produced in rabbits. Digestion of rat lung enzyme with endoglycosidase (peptide-N-glycosidase F) reduced the Mr to 36,000, suggesting that rat CA contains one N-linked oligosaccharide chain. All of eight additional mammalian CA IVs that were examined also contained oligosaccharide chains, as evidenced by reduction in Mr from 52,000 (cow, sheep, and rabbit), 42,000 (pig, guinea pig, and dog), and 39,000 (mouse and hamster) to 36,000 after treatment of the respective lung microsomal membranes with peptide-N-glycosidase F. The 36-kDa human enzyme showed no change in molecular mass with this treatment. Thus, the human CA IV is the exceptional one in lacking carbohydrate. Rat lung CA IV was found to be relatively resistant to sodium dodecyl sulfate and to be anchored to membranes by a phosphatidylinositol-glycan linkage; both properties were found to be shared by other mammalian CA IVs. Western blot analysis indicated distribution of CA IV in rat tissues other than kidney and lung where it was previously known to be present. CA IV was particularly abundant in rat brain, muscle, heart, and liver, all locations where the CA IV enzyme was not known to be present previously. None was detected in rat skin or spleen.  相似文献   

14.
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

15.
Androgen-linked control of rat liver carbonic anhydrase III   总被引:3,自引:0,他引:3  
The concentration of carbonic anhydrase III (CAIII) in male rat liver was found to be 30 times greater than that in the female. Castration of male rats led to marked reduction in liver CAIII concentrations which could be partially restored to control levels by testosterone replacement. Marked developmental and senescence changes in liver CAIII were also observed in male rats.  相似文献   

16.
Carbonic anhydrase (CA) activity was localized in the salivery glands of the cockroach, Periplaneta americana, by (1) Hansson's histochemical technique, and (2) the use of the fluorescent sulphonamide, 5-dimethyl-amino-naphthalene-1-sulphonamide (DNSA). Both techniques reveal the same distribution pattern of CA in the four morphologically different cell types of the glands: peripheral cells, central cells, inner acinar duct cells, and distal duct cells. Positive reactions with Hansson's cobalt/phosphate technique were found in the apical regions of the peripheral cells and the distal duct cells, and were inhibited by 10–5 M acetazolamide in control experiments. No staining could be detected in the central cells and the inner acinar duct cells. The fluorescent CA inhibitor DNSA (10–4 M) specifically stained the peripheral cells and the distal duct cells in methanolfixed cryostat sections, whereas the central cells and the inner acinar duct cells remained unstained. The role of CA in the peripheral cells is not clear. CA activity in the distal duct cells may provide the protons needed to run the vacuolar-type H+-ATPase on the apical infoldings of the cells. This ATPase may be involved in modification of the primary saliva.  相似文献   

17.
The localization of carbonic anhydrase in the sperm storage regions of turkey and quail was investigated using a histochemical method showing the activity of all the isozymes present. Intense carbonic anhydrase activity was found in the turkey sperm storage tubules and infundibular storage glands, whereas no activity could be detected in the quail at these sites. Both species did, however, show strong membrane-bound and cytoplasmic activity in the non-ciliated cells of the utero-vaginal surface epithelium and scattered cells of the vaginal epithelium. The enzyme catalyses the reaction , and the presence of carbonic anhydrase in these regions makes rapid changes in pH possible. It is suggested that increasing pH and/or the addition of bicarbonate stimulates sperm motility needed during transfer of the oviducal lumen. A lowering of the pH would keep the sperm qui escent during storage. The duration of sperm storage is considerably longer in the turkey than in the quail. The high quantity of carbonic anhydrase in the turkey sperm storage tubules may, thus, play a role in the duration of sperm storage.  相似文献   

18.
19.
Sexual differentiation of rat liver carbonic anhydrase III   总被引:5,自引:0,他引:5  
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

20.
Most work with the male rat liver carbonic anhydrase isozymes in the past decade has centered on the cytosolic CA III and the mitochondrial CA V. This paper reports that the relative activity of both isozymes is altered in streptozotocin-diabetes. Carbonic anhydrase activity of perfused liver homogenates and disrupted, isolated mitochondria was measured by the mass spectrometric 18O decay technique at 37 degrees C. The contributions of the different isozymes were determined based on intracellular location and sensitivity to acetazolamide inhibition. Diabetes resulted in a twofold increase in the activity of CA V but a halving in the activity of CA III. This is the first time that liver CA V has been shown to be altered by physiological stress. The total carbonic anhydrase activity in the diabetic rat liver was unaltered compared with control rats; however, CA III never accounted for more than 50% of this activity. Since CA isozymes I, II, and IV together account for 30% of the CA activity in control rats and 70% in diabetic rats it is concluded that one or more of these isozymes is subject to regulation in the diabetic male rat. The increase in CA V during diabetes is in accord with this isozyme having an important function in provision of substrate for hepatic gluconeogenesis and ureagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号