首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The averaged structure of rigor cross-bridges in insect flight muscle is further revealed by three-dimensional reconstruction from 25-nm sections containing a single layer of thin filaments. These exhibit two thin filament orientations that differ by 60 degrees from each other and from myac layer filaments. Data from multiple tilt views (to +/- 60 degrees) was supplemented by data from thick sections (equivalent to 90 degrees tilts). In combination with the reconstruction from the myac layer (Taylor et al., 1989), the entire unit cell is reconstructed, giving the most complete view of in situ cross-bridges yet obtained. All our reconstructions show two classes of averaged rigor cross-bridges. Lead bridges have a triangular shape with leading edge angled at approximately 45 degrees and trailing edge angled at approximately 90 degrees to the filament axis. We propose that the lead bridge contains two myosin heads of differing conformation bound along one strand of F-actin. The lead bridge is associated with a region of the thin filament that is apparently untwisted. We suggest that the untwisting may reflect the distribution of strain between myosin and actin resulting from two-headed, single filament binding in the lead bridge. Rear bridges are oriented at approximately 90 degrees to the filament axis, and are smaller and more cylindrical, suggesting that they consist of single myosin heads. The rear bridge is associated with a region of apparently normal thin filament twist. We propose that differing myosin head angles and conformations consistently observed in rigor embody different stages of the power stroke which have been trapped by a temporal sequence of rigor cross-bridge formation under the constraints of the intact filament lattice.  相似文献   

2.
We have undertaken some computer modeling studies of the cross-bridge observed by Reedy in insect flight muscle so that we investigate the geometric parameters that influence the attachment patterns of cross-bridges to actin filaments. We find that the appearance of double chevrons along an actin filament indicates that the cross-bridges are able to reach 10--14 nm axially, and about 90 degrees around the actin filament. Between three and five actin monomers are therefore available along each turn of one strand of actin helix for labeling by cross-bridges from an adjacent myosin filament. Reedy's flared X of four bridges, which appears rotated 60 degrees at successive levels on the thick filament, depends on the orientation of the actin filaments in the whole lattice as well as on the range of movement in each cross-bridge. Fairly accurate chevrons and flared X groupings can be modeled with a six-stranded myosin surface lattice. The 116-nm long repeat appears in our models as "beating" of the 14.5-nm myosin repeat and the 38.5-nm actin period. Fourier transforms of the labeled actin filaments indicate that the cross-bridges attach to each actin filament on average of 14.5 nm apart. The transform is sensitive to changes in the ease with which the cross-bridge can be distorted in different directions.  相似文献   

3.
4.
Electron tomography, correspondence analysis, molecular model building, and real-space refinement provide detailed 3-D structures for in situ myosin crossbridges in the nucleotide-free state (rigor), thought to represent the end of the power stroke. Unaveraged tomograms from a 25-nm longitudinal section of insect flight muscle preserved native structural variation. Recurring crossbridge motifs that repeat every 38.7 nm along the actin filament were extracted from the tomogram and classified by correspondence analysis into 25 class averages, which improved the signal to noise ratio. Models based on the atomic structures of actin and of myosin subfragment 1 were rebuilt to fit 11 class averages. A real-space refinement procedure was applied to quantitatively fit the reconstructions and to minimize steric clashes between domains introduced during the fitting. These combined procedures show that no single myosin head structure can fit all the in situ crossbridges. The validity of the approach is supported by agreement of these atomic models with fluorescent probe data from vertebrate muscle as well as with data from regulatory light chain crosslinking between heads of smooth muscle heavy meromyosin when bound to actin.  相似文献   

5.
6.
The paramyosin of insect flight muscle   总被引:9,自引:0,他引:9  
Paramyosin has been extracted and purified from the flight muscle of the insects Lethocerus cordofanus, Lethocerus maximus (water bugs), Heliocopris japetus (dung beetle) and Pachnoda ephippiata (rosechafer beetle). The subunit molecular weight, estimated by sodium dodecyl sulphate electrophoresis, is 107,000 ± 6000. The intrinsic sedimentation constant is 3.17 S and circular dichroism measurements give about 87 % helix, showing that the molecule is likely to be a two-chain rod.The amino acid composition of insect paramyosins resembles that of molluscan and annelid paramyosins except that the Glu/Asp ratio is higher. The amino acid analysis of insect tropomyosin is also given. Electron microscopy of tactoids shows an axial periodicity of 732 ± 8 Å or 146 Å with fine structure differing from that of molluscan tactoids.The proportion of paramyosin in the myofibrils, estimated by densitometry of stained gels, is 6.3% in L. cordofanus and 9.5% in rosechafer, and the ratio of myosin to paramyosin in L. cordofanus is 8.2. The possibility that paramyosin is a core protein of the myosin filaments is discussed.  相似文献   

7.
8.
Three-dimensional structure of the insect (Lethocerus) flight muscle M-band   总被引:2,自引:0,他引:2  
The oval myosin filament profiles in transverse sections through the M-band of Lethocerus flight muscle are arranged in one of three orientations 60 degrees apart and point along the 11 directions of the hexagonal filament lattice. Relative orientations are not systematically related to give a superlattice structure, but neither are the orientations arranged completely randomly. In fact there is a nearly random structure with a slight bias towards adjacent filaments being identically oriented. This form of M-band structure is explained in terms of interactions between quasi-equivalent M-bridges. Its implications with regard to myosin crossbridge arrangement depend on the rotational symmetry of the crossbridge helix. For 6-stranded helices, 60 degrees rotations have no noticeable effect. However, in the case of the more likely 4-stranded structure, our results show that the crossbridge origins in the insect flight muscle A-band would be highly disordered. This disorder must be accounted for in interpreting both the flared-X crossbridge interactions seen in transverse sections of rigor insect flight muscle and the beautiful X-ray diffraction patterns from the same preparation. It is likely that in rigor insect muscle, some flared-Xs have the two heads of single myosin molecules interacting with two different actin filaments, whereas other flared-Xs have both of the myosin heads in one molecule interacting with the same actin filament.  相似文献   

9.
The Z-line in insect flight muscle   总被引:1,自引:0,他引:1  
  相似文献   

10.
The three-dimensional structure of the central region of the Z disk of honeybee flight muscle has been determined to a resolution of 70 A by three-dimensional reconstruction from electron micrographs of tilted thin sections. The reconstructions show a complex assembly in which actin filaments terminate and are cross-linked together; a number of structural domains of this network are resolved in quantitative three-dimensional detail. The central region of the Z disk contains two sets of overlapping actin filaments of opposite polarity, which originate in the sarcomeres adjacent to the Z disk, and connections between these filaments. The filaments are deflected by the attachment of cross-links; spacing between filaments change by greater than 100 A during their passage through the Z disk. Each actin filament is linked by connecting structures to four filaments of opposite polarity and two filaments are of the same polarity. Four types of connecting density domain are observed in association with pairs of filaments of opposite polarity: C1, C2, C3, and C5. Two of these, C3 and C5, are associated with the ends of actin filaments. Another connection, C4, is associated with three filaments of the same polarity; C4 is threefold symmetric.  相似文献   

11.
The structure of the actin-tropomyosin-heavy meromyosin rigor complex was studied by image analysis of electron micrographs. The arrowhead of the rigor complex has a whisker-like structure with a dense turning point at the "barb" of the arrowhead. The neck region of the myosin head in the reconstructed three-dimensional image is present in the area corresponding to the dense point. It is concluded that at least one extra-thin area contributes to the neck region, and that the two heads in the heavy meromyosin molecule join a double helical rope beyond the end of the large head (G in this study). (This is different from previous interpretations). It is also concluded that the heavy meromyosin has a short bent part near the head/rod junction in the rigor complex.  相似文献   

12.
13.
The structure of the actin-tropomyosin complex, which represents on active form of the thin filaments of skeletal muscle and the actin-tropomyosin-troponin T-troponin I complex, which represents an inhibited form, have been studied by three-dimensional reconstruction from electron micrographs.A model of the three-dimensional structure of the actin-tropomyosin complex obtained by averaging the twelve “best” sets of data showed that the structure of the helix was polar and that the actin-tropomyosin contact was relatively loose. The detailed shape of the actin monomer and tropomyosin strands could be observed.A model of the three-dimensional structure of the actin-tropomyosin-troponin T-troponin I complex obtained by averaging the nine “best” sets of data showed that the contact between the actin and tropomyosin was very close in the inhibited filament, where the position of tropomyosin differed by approximately 10 Å from that in the active filament.The biological significance of the change in the extent of the actin-tropomyosin contact and of the movement of tropomyosin is discussed with reference to the mechanism of the regulation of muscle contraction by the tropomyosin-troponin-calcium system.  相似文献   

14.
A proline shuttle for oxidation of extramitochondrial NADH was reconstituted from soluble and mitochondrial fractions of blowfly (Phormiaregina) flight muscle. The soluble fraction catalyzed reduction of Δ′-pyrroline-5-carboxylate to proline via the action of Δ′-pyrroline-5-carboxylate reductase (EC 1.5.1.2). The reaction required NADH as hydrogen donor, NAD (P) H being ineffective in this regard. Mitochondria catalyzed regeneration of Δ′-pyrroline-5-carboxylate from proline via action of proline oxidase. The capacity of the shuttle to operate under conditions of possible competition for Δ′-pyrroline-5-carboxylate between Δ′-pyrroline-5-carboxylate reductase and Δ′-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) was incestigated. Results of these investigations indicate that dehydrogenase activity does not significantly interfere with shuttle activity.  相似文献   

15.
16.
Males of the American cockroach, Periplaneta americana, received an injection of 32P-orthophosphates and the specific activity of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) was determined after 120 min of in vivo incorporation. If the insects were forced to fly for 10 min immediately before the end of the experiment, the specific activity (S.A.) of PC and PE was lowered by 34.3 and 31.0%, respectively, that of PI by 17.5%. If the animals were allowed to rest for 10 min after cessation of flight, the S.A. of PC and PE did not differ significantly from the controls, whereas that of PI rose by 91.0% above the control value. These effects cannot be due to changes in precursor labelling (glycerophosphate and phosphoarginine were measured) and reflect changes in the rate of phospholipid biosynthesis. The possibility is discussed that mechanisms regulating the rate of phospholipid biosynthesis are involved.  相似文献   

17.
18.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

19.
20.
Subfragment 2 (S2), the segment that links the two myosin heads to the thick filament backbone, may serve as a swing-out adapter allowing crossbridge access to actin, as the elastic component of crossbridges and as part of a phosphorylation-regulated on-off switch for crossbridges in smooth muscle. Low-salt expansion increases interfilament spacing (from 52 nm to 67 nm) of rigor insect flight muscle fibers and exposes a tethering segment of S2 in many crossbridges. Docking an actoS1 atomic model into EM tomograms of swollen rigor fibers identifies in situ for the first time the location, length and angle assignable to a segment of S2. Correspondence analysis of 1831 38.7 nm crossbridge repeats grouped self-similar forms from which class averages could be computed. The full range of the variability in angles and lengths of exposed S2 was displayed by using class averages for atomic fittings of acto-S1, while S2 was modeled by fitting a length of coiled-coil to unaveraged individual repeats. This hybrid modeling shows that the average length of S2 tethers along the thick filament (except near the tapered ends) is approximately 10 nm, or 16% of S2's total length, with an angular range encompassing 90 degrees axially and 120 degrees azimuthally. The large range of S2 angles indicates that some rigor bridges produce positive force that must be balanced by others producing drag force. The short tethering segment clarifies constraints on the function of S2 in accommodating variable myosin head access to actin. We suggest that the short length of S2 may also favor intermolecular head-head interactions in IFM relaxed thick filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号