首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild‐type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis‐zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6‐(Δ2‐isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.  相似文献   

2.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

3.
The objective of the present work was to describe the simultaneous changes in endogenous levels of cytokinins, abscisic acid, indoleacetic acid and ethylene in detached, senescing tobacco (Nicotiana rustica L.) leaves. These measurements were related to changes in chlorophyll contents, 14CO2 fixation and proline contents — three parameters which have been considered to reflect senescence. Effects of exogenous hormonal treatments on these parameters, as well as on endogenous hormonal levels, provided further evidence for the interrelationships between hormones and for their roles in senescence. Starting with actively growing attached leaves and ending with well-advanced senescence in detached leaves, our data indicate a chronological sequence of three hormonal states: (a) cytokinins — high activity, abscisic acid, auxin and ethylene — low contents (actively growing, attached leaves); (b) cytokinins — low activity, abscisic acid — high, auxin and ethylene — low contents (apparent induction of senescence in detached leaves); and (c) cytokinins and abscisic acid — low, auxin and ethylene — high contents (senescence proper in detached leaves).  相似文献   

4.
To investigate the role of mitochondrial farnesyl diphosphate synthase (FPS) in plant isoprenoid biosynthesis we characterized transgenic Arabidopsis thaliana plants overexpressing FPS1L isoform. This overexpressed protein was properly targeted to mitochondria yielding a mature and active form of the enzyme of 40 kDa. Leaves from transgenic plants grown under continuous light exhibited symptoms of chlorosis and cell death correlating to H2O2 accumulation, and leaves detached from the same plants displayed accelerated senescence. Overexpression of FPS in mitochondria also led to altered leaf cytokinin profile, with a reduction in the contents of physiologically active trans-zeatin- and isopentenyladenine-type cytokinins and their corresponding riboside monophosphates as well as enhanced levels of cis-zeatin 7-glucoside and storage cytokinin O-glucosides. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase did not prevent chlorosis in plants overexpressing FPS1L, but did rescue accelerated senescence of detached leaves and restored wild-type levels of cytokinins. We propose that the overexpression of FPS1L leads to an enhanced uptake and metabolism of mevalonic acid-derived isopentenyl diphosphate and/or dimethylallyl diphosphate by mitochondria, thereby altering cytokinin homeostasis and causing a mitochondrial dysfunction that renders plants more sensitive to the oxidative stress induced by continuous light.  相似文献   

5.
In order to investigate the possibility that cytokinins control transpiration indirectly through affecting leaf senescence, a direct comparison was made of the effect of different cytokinins on transpiration and senescence of oat leaves (Avena sativa L. cv. Forward). Senescence was assessed by measuring chlorophyll loss. The synthetic cytokinins N6 benzyladenine (BA) and kinetin delayed senescence and increased transpiration of oat leaves to a greater extent than did the naturally occurring compounds zeatin, Nb2 isopentenyladenine (i6 Ade) and 6-ø-hydroxybenzyladenosine (hyd-BA riboside). During the early stages of the transpiration experiment zeatin showed similar or greater activity than BA. This period was longest when freshly excised leaves were used, was reduced when leaves were used after incubation in distilled water in the dark for 20 h and was eliminated by incubation in cytokinin solution in the dark. After this period the activity of zeatin declined relative to BA. The effect of cytokinins in increasing transpiration occurred only in the light; no effect was observed in the dark. BA showed higher activity than zeatin in senescence tests but both cytokinins were less effective as the tests progressed, this decrease in activity being more rapid when older leaves were used. The results are discussed in relation to the mechanisms by which endogenous cytokinins might control sensecence and transpiration in oat leaves and to the value of the oat leaf senscence and transpiration bioassays as tests for cytokinin activity of plant extracts.  相似文献   

6.
The effects of various chemically pure gibberellins and cytokinins on leaf yellowing of Alstroemeria were described. The loss of chlorophyll was measured both in leaves of cut flowering stems and in a model system consisting of detached leaf tips. It was demonstrated that plant growth substances affected chlorophyll loss in both systems to the same extent. Leaf senescence was delayed by various gibberellins and cytokinins. The results demonstrated that some of the gibberellins (GA4 and GA7) are far more effective in delaying chlorophyll loss than GA3, which is commonly used as a postharvest treatment for Alstroemeria cut flowering stems. Immunoassays were used to demonstrate that the effect of gibberellins on leaf yellowing does not involve an increase in the endogenous cytokinin concentrations in the leaves as an intermediate step.Abbreviations GA gibberellin A - HPLC high performance liquid chromatography - GA3Mc GA3-methyl ester - ZR zeatin riboside - IPAR isopentenyl adenine riboside.  相似文献   

7.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

8.
The possibility that NH4 + accumulation is linkedto the senescence of detached rice (Oryza sativa) leavesinduced by NaCl was investigated. NaCl was effective in promoting senescenceandin increasing NH4 + content of detached rice leaves.NaCl-promoted senescence is mainly due to the effect of both Na+ andCl- ions. NaCl had no or slight effect on relative water content,suggesting that an osmotic effect is unlikely to be a major factor contributingto senescence of these leaves. NaCl-induced NH4 +accumulation was due to enhanced nitrate reduction and decreased glutaminesynthetase activity. Exogenous NH4Cl, which caused an accumulationofNH4 + in detached rice leaves, also promoted senescence.Itwas found that an increase in NH4 + content preceded theoccurrence of senescence caused by NaCl. Results also show that NaCl-promotedsenescence is unlikely to be due to the lack of glutamate, glutamine,aspartate,and asparagine. The current results suggest that NH4 +accumulation is linked to NaCl-induced rice leaf senescence. Since ethylene isknown to be a potent promoter of leaf senescence, we also investigated the roleof ethylene in the regulation of NH4 +-promoted senescenceof detached rice leaves. NaCl or NH4Cl treatment resulted in adecrease of ethylene production. Evidence was presented to show thatNH4 + accumulation in detached rice leaves does not changetissue sensitivity to ethylene. Clearly, the possible involvement of ethyleneinNH4 +-promoted senescence is excluded.  相似文献   

9.
Summary It has been suggested that the effect of cytokinins in retarding leaf senescence comes about through their incorporation into tRNA. To test this hypothesis, kinetin-8-14C, 6-benzylaminopurine-benzyl-7-14C and adenine-8-3H were applied to detached tobacco leaves, and the nucleic acids were thereafter extracted and chromatographed on MAK columns. Kinetin-8-14C and adenine-8-3H were readily incorporated into RNA in a similar pattern. 6-Benzylaminopurine-benzyl-7-14C was effective in delaying chlorophyll loss but was not incorporated into any nucleic-acid fraction. It is concluded that the possibility of cytokinins retarding leaf senescence by completion of tRNA is not supported.  相似文献   

10.
The possibility that ammonium (NH 4 + ) accumulation is linked to the senescence of detached rice (Oryza sativa) leaves induced by copper (Cu) was investigated. CuSO4 was effective in promoting senescence of detached rice leaves. Both CuSO4 and CuCl2 induced NH 4 + accumulation in detached rice leaves, indicating that NH 4 + accumulation is induced by copper. Sulfate salts of Mg, Mn, Zn, and Fe were ineffective in inducing NH 4 + accumulation in detached rice leaves. The senescence of detached rice leaves induced by Cu was found to be prior to NH 4 + accumulation. Free radical scavengers, such as glutathione and thiourea, inhibited senescence caused by Cu and at the same time inhibited Cu-induced NH 4 + accumulation. The current results suggest that NH 4 + accumulation is not associated with senescence induced by Cu, but is part of the overall expression of oxidative damage caused by an excess of Cu. Evidence was presented to show that copper-induced ammonium accumulation in detached rice leaves is attributed to a decrease in glutamine synthetase activity and an increase in reduction of nitrate.  相似文献   

11.
Subhan  D.  Murthy  S.D.S. 《Photosynthetica》2001,39(1):53-58
Al3+ significantly delayed the loss of chlorophyll (Chl), protein, and carotenoids when compared to K+ and Mg2+ during dark-induced senescence of detached primary leaves of Triticum aestivum. Thylakoid membranes isolated from Al3+ - treated leaves showed a better retention of photosystem (PS) 2, PS1, and whole chain electron transport activities than thylakoids of K+- or Mg2+-treated leaves. These ions protected the electron transport activities and restored the DCMU-dependent fluorescence increase of thylakoid membranes in a valency-dependent manner. Al3+ also delayed the change of excitation energy distribution during senescence.  相似文献   

12.
Although the 9-substituted adenines are commonly inactive as cytokinins, the nucleocyclitol 3-(-adenin-9-yl)-3-deoxy-1,5,6-tri-0-(methylsulfonyl)-muco-inositol (NI) proved to be active in the following bioassays: cell proliferation in soybean cotyledon callus tissue, cell expansion in excised radish cotyledons, and delay of senescence in detached leaves. In these assays, the effect of the compound, applied at the same molar concentration as benzyl adenine, was lower or less uniform than BA. NI completely failed to promote germination of lettuce seeds in conditions of secondary dormancy or thermodormancy, whre BA is effective. NI can substitute for BA in some though not all of the numerous responses evoked by cytokinins.  相似文献   

13.
14.
Ribonuclease and Chlorophyllase Activities in Senescing Leaves   总被引:3,自引:0,他引:3  
The activities of two enzymes, ribonuclease and chlorophyllase were investigated during the senescence of leaves. Ribonuclease activities were measured in primary leaves of Phaseolus vulgaris, and related to the levels of nucleic acid, protein and chlorophyll. Similarly, changes in chlorophyllase activity during senescence of leaves of Raphanus sativus were measured and related to chlorophyll. During senescence the levels of each enzyme as well as its respective substrate declined. Retardation of senescence, by excision of young tissue from intact plants or by treatment of detached leaves with cytokinins resulted in a maintainace of both the substrate and enzyme levels. It was concluded that high levels of ribonuclease and chlorophyllase activity are not linked directly with the degradation of RNA and chlorophyll during leaf senescence.  相似文献   

15.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

16.
Transgenic tobacco plants overexpressing single Arabidopsis thaliana cytokinin dehydrogenase (CKX, EC 1.5.99.12) genes AtCKX1, AtCKX2, AtCKX3, AtCKX4, AtCKX5, AtCKX6, and AtCKX7 under the control of a constitutive 35S promoter were tested for CKX-enzymatic activity with varying pH, electron acceptors, and substrates. This comparative analysis showed that out of these, only AtCKX2 and AtCKX4 were highly active enzymes in reaction with isoprenoid cytokinins (N 6 -(2-isopentenyl)adenine (iP), zeatin (Z)) and their ribosides using the artificial electron acceptors 2,6-dichlorophenol indophenol (DCPIP) or 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q0). Turnover rates of these cytokinins by four other AtCKX isoforms (AtCKX1, AtCKX3, AtCKX5, and AtCKX7) were substantially lower, whereas activity of AtCKX6 was almost undetectable. The isoenzymes AtCKX1 and AtCKX7 showed significant preference for cytokinin glycosides, especially N 6 -(2-isopentenyl)adenine 9-glucoside, under weakly acidic conditions. All enzymes preferentially cleave isoprenoid cytokinins in the presence of an electron acceptor, but aromatic cytokinins are not resistant and are degraded with lower reaction rates as well. Cytokinin nucleotides, considered as resistant to CKX attack until now, were found to be potent substrates for some of the CKX isoforms. Substrate specificity of AtCKXs is discussed in this study with respect to the structure of the CKX active site. Further biochemical characterization of the AtCKX1, AtCKX2, AtCKX4 and AtCKX7 enzymes showed pH-dependent activity profiles.  相似文献   

17.
Cuticular penetration of five different 14C-labeled chemicals (benzoic acid, bitertanole, carbaryl, epoxiconazole and 4-nitrophenol) into Arabidopsis thaliana leaves was measured and permeances P (ms−1) were calculated. Thus, cuticular barrier properties of A. thaliana leaves have been characterized quantitatively. Epoxiconazole permeance of A. thaliana was 2.79 × 10−8 ms−1. When compared with cuticular permeances measured with intact stomatous and astomatous leaf sides of Prunus laurocerasus, frequently used in the past as a model species studying cuticular permeability, A. thaliana has a 48- to 66-fold higher permeance. When compared with epoxiconazole permeability of isolated cuticles of different species (Citrus aurantium, Hedera helix and P. laurocerasus) A. thaliana permeability is between 17- to 199-fold higher. Co-permeability experiments, simultaneously measuring 14C-epoxiconazole and 3H2O permeability of isolated cuticles of three species (C. aurantium, H. helix and P. laurocerasus) showed that 3H2O permeability was highly correlated with epoxiconazole permeability. The regression equation of this correlation can be used predicting cuticular transpiration of intact stomatous leaves of A. thaliana, where a direct measurement of cuticular permeation using 3H2O is impossible. Water permeance estimated for A. thaliana was 4.55 × 10−8 ms−1, which is between 12- and 91-fold higher than water permeances measured with isolated cuticles of C. aurantium, H. helix and P. laurocerasus. This indicates that cuticular water permeability of the intact stomatous leaves of the annual species A. thaliana is fairly high and in the upper range compared with most P values of perennial species published in the past.  相似文献   

18.
1-Methylcyclopropene (1-MCP) applied alone did not influence significantly the chlorophyll and carotenoid content of the older leaves of Arabidopsis thaliana (L.) Heynh., but retarded the senescence of the younger ones (6th and 7th leaf nodes). However, 1-MCP effectively blocks the ethylene induced senescence of excised rosette leaves. The preliminary application of 1-MCP (3 h in advance to the treatment by Ethrel) almost totally eliminated the ethylene action. Similar trend was also observed after simultaneous application of Ethrel and 1-MCP, and the effects of both treatments on the chlorophyll and carotenoid destruction are comparable.  相似文献   

19.
20.
Panchuk II  Zentgraf U  Volkov RA 《Planta》2005,222(5):926-932
Oxygen-free radicals are thought to play an essential role in senescence. Therefore, the expression patterns of the small gene family encoding the H2O2 scavenging enzymes ascorbate peroxidase (APX; EC 1.11.1.11) were analyzed during senescence of Arabidopsis thaliana (L.) Heinh. Applying real-time RT-PCR, the mRNA levels were quantified for three cytosolic (APX1, APX2, APX6), two chloroplastic types (stromal sAPX, thylakoid tAPX), and three microsomal (APX3, APX4, APX5) isoforms identified in the genome of Arabidopsis. The genes of chloroplastic thylakoid-bound tAPX and the microsomal APX4 exhibit a strong age-related decrease of mRNA level in leaves derived from one rosette as well as in leaves derived from plants of different ages. In contrast to the tAPX, the mRNA of sAPX was only reduced in old leaves of old plants. The microsomal APX3 and APX5, and the cytosolic APX1, APX2, and APX6 did not show remarkable age-related changes in mRNA levels. The data show that expression of the individual APX genes is differentially regulated during senescence indicating possible functional specialization of respective isoenzymes. The hydrogen peroxide levels seem to be controlled very precisely in different cell compartments during plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号