首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

In the absence of insemination or of a suitable oviposition site, Drosophila melanogaster females react with egg retention patterns which differ as to the position in the genital tract at which the mechanism operates (ovarioles for initial retention; uterus for oviposition blocking) and to physiological basis. A study of the first laboratory generation of isofemale lines, founded by using three different samples of wild flies collected the same year from a natural population, showed a significant genetic variability in initial egg retention by virgin females and in the capacity for oviposition blocking by mated flies reacting to an unfavorable oviposition site. Comparison of isofemale lines showed that these two adaptive behavior patterns also differ in their genetic determination. They are controlled, and therefore can react, independently to selection pressures resulting from seasonal variation in the natural environment.  相似文献   

2.
In temperate regions, Drosophila melanogaster has perennial overwintering populations. These populations present seasonal variations, under the influence of developmental temperature, for several genetically determined physiological traits. The capacity of virgin females to control ovulation is one of these characteristics. Phenotypes able to postpone egg-laying in the absence of insemination are favored under low temperature development and are numerous in Autumn generations. Moreover, a shift between Autumn and the following Spring has often been observed in favor of these phenotypes. The aim of the present study is to determine the characteristics and situations which confer an advantage on long as compared with short-retention phenotypes, during this non-reproductive period. Several traits were studied: resistance to cold shocks, resistance to long cold periods, developmental duration and viability, longevity and starvation resistance. Long-retention phenotypes (LL) had a longer life expectancy than short-retention phenotypes (ss) under virgin or mated status and greater resistance to starvation, by avoiding waste material (eggs). At 14 °C, flies that had mated once survived for several months on normal substrate with live spermatozoa, and flies on deficient medium (without proteins) survived for more than 3 months varying with phenotype. Flies with the best chance of overwintering are the long-retention phenotypes and some hybrids. The most favorable situation for population restoration is when flies are inseminated once in Autumn rather than when they remain virgin until Spring, because males die sooner than females.  相似文献   

3.
The ability of virgin Drosophila melanogaster adults to retain eggs is thought to be an adaptation to persisting in temperate areas, based on differences in this trait between European and African populations, and based on seasonal changes in this trait in France. By retaining eggs in the absence of males and under conditions of poorer nutrition (conditions common in temperate areas during colder months), females reduce the wastage of resources and increase their probability of surviving spring into summer, enabling them to initiate summer population expansions. To test for variation in virgin egg retention along a climatic gradient, we characterized clinal variation in strains collected from eastern Australia extending from temperate Tasmania to tropical northern Queensland. Despite testing a large number of strains and repeated testing of the cline ends, we did not detect any evidence for clinal variation in virgin egg retention. Therefore although D. melanogaster in temperate Australia overwinter at the adult stage, there is no evidence for selection on virgin retention capacity producing clinal patterns. This contrasts with other evidence for clinal variation in egg production patterns over winter.  相似文献   

4.
Rako L  Anderson AR  Sgrò CM  Stocker AJ  Hoffmann AA 《Genetica》2006,128(1-3):373-384
In Drosophila melanogaster, inversion In(3R)Payne increases in frequency towards low latitudes and has been putatively associated with variation in size and thermal resistance, traits that also vary clinally. To assess the association between size and inversion, we obtained isofemale lines of inverted and standard karyotype of In(3R)Payne from the ends of the Australian D. melanogaster east coast cline. In the northern population, there was a significant association between In(3R)Payne and body size, with standard lines from this population being relatively larger than inverted lines. In contrast, the inversion had no influence on development time or cold resistance. We strengthened our findings further in a separate study with flies from populations from the middle of the cline as well as from the cline ends. These flies were scored for wing size and the presence of In(3R)Payne using a molecular marker. In females, the inversion accounted for around 30% of the size difference between cline ends, while in males the equivalent figure was 60%. Adaptive shifts in size but not in the other traits are therefore likely to have involved genes closely associated with In(3R)Payne. Because the size difference between karyotypes was similar in different populations, there was no evidence for coadaptation within populations.  相似文献   

5.
Experimental evolution is a powerful tool to study adaptation under controlled conditions. Laboratory natural selection experiments mimic adaptation in the wild with better‐adapted genotypes having more offspring. Because the selected traits are frequently not known, adaptation is typically measured as fitness increase by comparing evolved populations against an unselected reference population maintained in a laboratory environment. With adaptation to the laboratory conditions and genetic drift, however, it is not clear to what extent such comparisons provide unbiased estimates of adaptation. Alternatively, ancestral variation could be preserved in isofemale lines that can be combined to reconstitute the ancestral population. Here, we assess the impact of selection on alleles segregating in newly established Drosophila isofemale lines. We reconstituted two populations from isofemale lines and compared them to two original ancestral populations (AP) founded from the same lines shortly after collection. No significant allele frequency changes could be detected between both AP and simulations showed that drift had a low impact compared to Pool‐Seq‐associated sampling effects. We conclude that laboratory selection on segregating variation in isofemale lines is too weak to have detectable effects, which validates ancestral population reconstitution from isofemale lines as an unbiased approach for measuring adaptation in evolved populations.  相似文献   

6.
Drosophila melanogaster males express two primary cuticular hydrocarbons (male-predominant hydrocarbons). These act as sex pheromones by influencing female receptivity to mating. The relative quantities of these hydrocarbons vary widely among natural populations and can contribute to variation in mating success. We tested four isofemale lines collected from a wild population to assess the effect of intrapopulation variation in male-predominant hydrocarbons on mating success. The receptivity of laboratory females to males of the four wild-caught lines varied significantly, but not consistently in the direction predicted by variation in male-predominant hydrocarbons. Receptivity of the wild-caught females to laboratory males also varied significantly, but females from lines with male-predominant hydrocarbon profiles closer to a more cosmopolitan one did not show a correspondingly strong mating bias toward a cosmopolitan male. Among wild-caught lines, the male-specific ejaculatory bulb lipid, cis-vaccenyl acetate, varied more than two-fold, but was not associated with variation in male mating success. We observed a strong inverse relationship between the receptivity of wild-caught females and the mating success of males from their own lines, when tested with laboratory flies of the opposite sex.  相似文献   

7.
Drosophila melanogaster has colonized temperate habitats on multiple continents over a historical time period, and many traits vary predictably with latitude. Despite considerable attention paid to clinal variation in Drosophila, the mechanisms generating such patterns in nature remain largely unidentified. In D. melanogaster, the expression of reproductive diapause can be induced by exposure to low temperatures and shortened photoperiods. Both diapause expression itself and the underlying genetic variance for diapause expression have widespread impacts on organismal fitness, and diapause incidence exhibits a 60% cline in frequency in the eastern United States. The major aim of this study was to evaluate whether the relative fitness of diapause and nondiapause genotypes varies predictably with environment. In experimental population cages in the laboratory, the frequency of genotypes that express diapause increased over time when flies were exposed to environmental stress, whereas the frequency of nondiapause genotypes increased when flies were cultured under benign control conditions. Other fitness traits correlated with the genetic variance for diapause expression (longevity, mortality rates, stress resistance, lipid content, preadult viability, fecundity profiles, and development time) also diverged between experimental treatments. Similarly, sampling of isofemale lines from natural populations revealed that the frequency of diapause incidence cycled over time in seasonal habitats: diapause expression was at high frequency following the winter season and subsequently declined throughout the summer months. In contrast, diapause expression was low and temporally homogeneous in isofemale line collections from human-associated urban habitats. These data suggest that genetic variation underlying the diapause-nondiapause dichotomy may be actively maintained by selection pressures that vary spatially and temporally in natural populations.  相似文献   

8.
Studies of short or medium range geographic variations play an increasing role in ecological genetics, and sensitive techniques are required to detect them. In this respect, two sampling techniques were compared inD. melanogaster. The biological data were provided by the analysis of four natural populations from the same geographic area, Spain (one) and Southern France (three), for four morphometrical traits: abdomen and thoracic pigmentation, and wing and thorax lengths. Traits were measured on wild living females and on their progeny reared in the laboratory at 25°C. For progeny analyses, two techniques were compared: the usual isofemale line technique, sib families issued from a single female, and a new isogroup technique, the progeny produced by a group of 20 wild-collected parents. Large phenotypic variations were observed in wild living flies, corresponding to the unstability of natural environmental conditions during their development. Among laboratory grown flies, variations were much smaller. Between isogroups, differences were small, due to sampling error and some common environment effects. Variations between lines were much greater, thus demonstrating a strong genetic component. When different populations have to be compared, the isogroup technique should be preferred since, for the same amount of work, the lesser variability between groups provides a more precise characterization of the population means.  相似文献   

9.
Flies from the first generation of isofemale lines of D. melanogaster founded by wild flies collected in spring, summer and autumn in two French populations have been studied for 4 successive years. Cyclical seasonal variations occur in various genetically determined characteristics involved in reproductive potential.The number of ovarioles of the females and female capacity to control oviposition are subject to variation consisting of an increase in frequency of genotypes controlling large number of ovarioles and strong oviposition blocking control in spring and autumn samples. The opposed genotypes (low number of ovarioles and weaker blocking of oviposition control) are favored in summer generations.This balancing selection, induced by temperature variations, modifies temporarily the genetic equilibrium of the population. This enhances the frequency of better adapted genotypes when conditions become less favorable.
Résumé L'étude pendant 4 ans de lignées isofemelles, fondées par des mouches capturées dans la nature, au printemps, en été et en automne, dans deux population françaises de D. melanogaster, a mis en évidence des variations saisonnières cycliques portant sur différents caractères liés au potentiel reproducteur. Les individus observés appartenaient à la première génération de laboratoire, élévée en conditions standard; les fluctuations observées correspondaient donc à des variations d'ordre génétique.Le nombre d'ovarioles des femelles et leur capacité à controler leur ponte en présence d'un substrat peu favorable sont soumis à ce type de variations cycliques. Il consiste en une augmentation de la fréquence de certains phénotypes (nombre d'ovarioles élevé et forte capacité de blocage de l'oviposition) au printemps et en automne, tandis que les génotypes opposés (faible nombre d'ovarioles et faible capacité de blocage) sont favorisés pendant les générations estivales.Ces variations correspondent à une sélection balancée induite par les fluctuations de la température. Elles conduisent à une modification temporaire de l'équilibre génétique de la population et à un accroissement de la fréquence des génotypes considérés comme mieux adaptés au climat tempéré, lorsque les conditions environnementales deviennent moins favorables.
  相似文献   

10.
The plasticity of ovariole number relative to developmental temperature was studied in three populations of Drosophila melanogaster at both ends of the cline: a temperate French population and two equatorial Congolese. Ovary size was much greater in the French flies, in agreement with an already known latitudinal cline. Among isofemale lines, significant differences in genetic variability were observed between populations with a maximum variability at intermediate temperatures. Parameters of phenotypic variability (CV and FA) were not statistically different among lines or populations, but a significant increase at low temperature was demonstrated for both. The shapes of the response curves (i.e., the norm of reaction) were analyzed by adjusting the data to a quadratic equation. The parameters of the equation were highly variable among lines. On the other hand, the temperature for maximum value of ovarioles (TMV) was much less variable and exhibited only a slightly significant difference between temperate and tropical flies (22.2°C vs. 22.7°C). During its geographic extension toward colder places, D. melanogaster underwent a large, presumably adaptative, increase in ovariole number but very little change in the norm of reaction of that trait.  相似文献   

11.
Clines for size and stress resistance traits have been described for several Drosophila species and replicable clines across different species may indicate climatic selection. Here we consider clines in stress resistance traits in an Australian endemic species, D. serrata, by comparing levels of variation within and among isofemale lines initiated with flies collected from the eastern coast of Australia. We also consider clinical variation in chill coma recovery, a trait that has recently been shown to exhibit high levels of variation among Drosophila species. Patterns were compared with those in the cosmopolitan species D. melanogaster from the same area. Both desiccation and starvation resistance showed no clinical pattern despite heritable variation among isofemale lines. In contrast chill coma resistance exhibited a linear cline in the anticipated direction, resistance increasing with latitude. Body size was measured as wing length and body weight. Both traits showed geographic variation and strong non-linear clines with a sharp reduction in size in the tropics. These results are discussed in the context of climatic selection and evolutionary processes limiting species borders.  相似文献   

12.
One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects.  相似文献   

13.
The seasonal daily travel of a group of snub-nosed monkey (Pygathrix roxellana) was investigated using the group’s straight-line distance method. The group was followed from dawn to dusk for 30 consecutive days during each season to encompass all aspects of daily travel patterns. The results showed that in Summer and Autumn, the mean daily travel distance (m) was significantly longer than in Winter and Spring. There was no significant difference in the mean daily travel distance between Summer and Autumn or between Winter and Autumn. The mean travel distance (m/hr) during daytime was significantly higher in Summer and Autumn than in Spring, and in Autumn than in Winter. The travel of the group in all seasons had similar patterns. Traveling showed morning and afternoon peaks, with a rest period at the noon in a day. Seasonal food availability, length of daytime, and mean travel distance (m/hr) during daytime might have contributed to the different daily travel distances in different seasons.  相似文献   

14.
A. A. Hoffmann  D. J. Clancy    E. Merton 《Genetics》1994,136(3):993-999
In Drosophila melanogaster, weak incompatibility in crosses between infected and uninfected strains is associated with a Wolbachia microorganism. Crosses between infected males and uninfected females show a reduction (15-30%) in egg hatch. Progeny tests indicated that the infection is widespread in Australian D. melanogaster populations and that populations are polymorphic for the presence of the infection. The infection status of 266 lines from 12 populations along the eastern coast of Australia was determined by 4',6-diamidino-2-phenylindole (DAPI) staining of embryos. All populations contained both infected and uninfected flies. Infection frequencies varied between populations but there was no discernible geographical pattern. Laboratory experiments indicated that the infection was not associated with a reduction in fecundity as in Drosophila simulans. Incompatibility levels could not be increased by laboratory selection on isofemale lines. Factors contributing to the persistence of the infection in D. melanogaster populations are discussed.  相似文献   

15.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   

16.
Selection on Wing Allometry in Drosophila Melanogaster   总被引:3,自引:2,他引:1       下载免费PDF全文
K. E. Weber 《Genetics》1990,126(4):975-989
Five bivariate distributions of wing dimensions of Drosophila melanogaster were measured, in flies 1) subjected to four defined environmental regimes during development, 2) taken directly from nature in seven U.S. states, 3) selected in ten populations for change in wing form, and 4) sampled from 21 long inbred wild-type lines. Environmental stresses during development altered both wing size and the ratios of wing dimensions, but regardless of treatment all wing dimensions fell near a common allometric baseline in each bivariate distribution. The wings of wild-caught flies from seven widely separated localities, and of their laboratory-reared offspring, also fell along the same baselines. However, when flies were selected divergently for lateral offset from these developmental baselines, response to selection was rapid in every case. The mean divergence in offset between oppositely selected lines was 14.68 SD of the base population offset, after only 15 generations of selection at 20%. Measurements of 21 isofemale lines, founded from wild-caught flies and maintained in small populations for at least 22 years, showed large reductions in phenotypic variance of offsets within lines, but a large increase in the variance among lines. The variance of means of isofemale lines within collection localities was ten times the variance of means among localities of newly established wild lines. These observations show that much additive genetic variance exists for individual dimensions within the wing, such that bivariate developmental patterns can be changed in any direction by selection or by drift. The relative invariance of the allometric baselines of wing morphology in nature is most easily explained as the result of continuous natural selection around a local optimum of functional design.  相似文献   

17.
Variation in lifespan may be linked to geographic factors. While latitudinal variation in lifespan has been studied for a number of species, altitude variation has received much less attention, particularly in insects. We measured the lifespan of different populations of the Natal fruit fly Ceratitis rosa along an altitudinal cline. For the different populations we first measured the residual longevity of wild flies by captive cohort approach and compared F(1) generation from the same populations. We showed an increase in lifespan with higher altitude for a part of our data. For the field collected flies (F0) the average remaining lifespan increased monotonically with altitude for males but not for females. For the F(1) generation, longevity of both males and females of the highest-altitude population was longer than for the two other lower-altitude populations. This relationship between altitude and lifespan may be explained by the effects of temperature on reproduction. Reproductive schedules in insects are linked to temperature: lower temperature, characteristic of high-altitude sites, generally slows down reproduction. Because of a strong trade-off between reproduction and longevity, we therefore observed a longer lifespan for the high- altitude populations. Other hypotheses such as different predation rates in the different sites are also discussed.  相似文献   

18.
Drosophila ananassae has a unique status among Drosophila species because of certain peculiarities in its genetic behavior. The most unusual feature of this species is its relatively high frequency of spontaneous male recombination. The results of studies on non-sexual behavior, such as phototactic responses, eclosion rhythm, and preferences for oviposition and pupation sites, lead us to suggest that this behavior is under polygenic control, with a substantial amount of additive genetic variation. Sexual isolation has been reported in D. ananassae with the degree of such isolation being stronger in isofemale lines than in natural populations. The significant variations seen in the mating propensity of several isofemale strains, inversion karyotypes and wild type strains, the diminishing effects of certain mutations on the sexual activity of males, and the positive responses to selection for high and low mating propensity point to a genetic control of sexual behavior in D. ananassae. Males contribute more to variation and thus are more subject to intrasexual selection than females. There is a positive correlation between sternopleural bristle number, mating propensity and fertility in D. ananassae. This correlation between morphometric traits and mating success suggests that larger flies are more successful in mating than smaller ones. There is also evidence for adaptive plasticity and a trade-off between longevity and productivity in D. ananassae. Rare, specific courtship song parameters that provide males with a mating advantage have also been reported in different geographic strains of D. ananassae. The remating behavior of males and females, sperm displacement, and the bi-directional selection for female remating speed indicate that post-mating behavior in this species may also be under genetic control. The occurrence of size assortative mating further indicates that there is size-dependent sexual selection in D. ananassae.  相似文献   

19.
The mating system of Drosophila buzzatii is characterized by short copulation duration, frequent remating in both males and females, and male ejaculate partitioning. Additional features of the system are strong sperm displacement and a high frequency of sterile matings. Remating frequencies and the effects of remating on various mating parameters were studied. In order to characterize variation, five isofemale lines from geographically distant localities in Australia (three localities), Brazil and the Canary Islands were used. Mating parameters studied were: premating time, copulation duration, interval between successive matings, and progeny number as a measure of sperm transfer. Variation for sperm displacement was studied in crosses between laboratory stocks and a number of isofemale lines from Australia. There were significant between‐line differences in female remating frequencies, premating time, copulation duration, interval between successive matings, and progeny numbers, indicating genetic variation for these traits. Females from the five lines mated on average 1.6 to 3.1 times in 4 h, with a maximum of eight matings for one female. The males were given a maximum of ten virgin females in sequence and more than one‐third of the males mated all ten females in the 2 h observation period. Copulation duration decreased and interval between matings increased with copulation number in multiply mated males. Mean copulation duration was c. 2 min. Sperm transfer, measured as the average number of progeny from a single mating, was low (c. 25) and multiply mated females gave more progeny than single mated females, although with much lower progeny numbers than observed in wild‐caught non‐virgin females. A surprisingly high proportion of observed matings gave no progeny, i.e. they were sterile matings. Sperm displacement was strong in most crosses and remained strong in multiply mated females. The results are discussed in relation to the evolution of mating patterns in Drosophila.  相似文献   

20.
We investigated the phenotypic plasticity of sternopleural bristle (SB) number as a function of growth temperature in isofemale lines from temperate (France) and tropical (Congo) populations of Drosophila melanogaster. We found concave reaction norms with a maximum in the middle of the thermal range, except in four African lines which exhibited a regularly decreasing response curve. Genetic variability (intraclass correlation) and evolvability (genetic CV, coefficient of variation) were independent properties and did not change with temperature. Residual, within-line variability was, however, strongly influenced by growth temperature, showing a U-shaped response curve and a minimum CV of 9% at 21.5 degrees C. As expected from a previously known latitudinal cline, maximum values (MV) were higher in temperate than in tropical flies. The temperature of maximum value (TMV) was observed at a higher temperature in the tropical population, in agreement with similar adaptive trends already observed for other quantitative traits. Significant negative correlations within each population were observed between a plasticity curvature parameter and MV or TMV. No difference in curvature was, however, observed between populations, in spite of their very different MVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号