首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of rhizobia with rice and wheat   总被引:1,自引:0,他引:1  
Webster  G.  Gough  C.  Vasse  J.  Batchelor  C.A.  O'Callaghan  K.J.  Kothari  S.L.  Davey  M.R.  Dénarié  J.  Cocking  E.C. 《Plant and Soil》1997,194(1-2):115-122
Recently, evidence has been obtained that naturally occurring rhizobia, isolated from the nodules of non-legume Parasponia species and from some tropical legumes, are able to enter the roots of rice, wheat and maize at emerging lateral roots by crack entry. We have now investigated whether Azorhizobium caulinodans strain ORS571, which induces root and stem nodules on the tropical legume Sesbania rostrata as a result of crack entry invasion of emerging lateral roots, might also enter rice and wheat by a similar route. Following inoculation with ORS571 carrying a lacZ reporter gene, azorhizobia were observed microscopically within the cracks associated with emerging lateral roots of rice and wheat. A high proportion of inoculated rice and wheat plants had colonized lateral root cracks. The flavanone naringenin at 10 and 10 M stimulated significantly the colonization of lateral root cracks and also intercellular colonization of wheat roots. Naringenin does not appear to be acting as a carbon source and may act as a signal molecule for intercellular colonization of rice and wheat by ORS571 by a mechanism which is nod gene-independent, unlike nodule formation in Sesbania rostrata. The opportunity now arises to compare and to contrast the ability of Azorhizobium caulinodans with that of other rhizobia, such as Parasponia rhizobia, to intercellularly colonize the roots of non-legume crops.  相似文献   

2.
The nitrogen fixing methylotrophic bacteria were isolated from the nodules of tropical legumes. Two isolates CMCJ317 and CMSA322 isolated from Crotalaria juncea and Sesbania aculeata possessing high nitrogenase activities under pure culture conditions and able to form nodules under inoculated conditions were further characterized. The biochemical characteristics revealed their close relationship with Methylobacterium nodulans type strain ORS2060. The PCR amplification of nodA and mxaF genes showed the expected 584 and 555 bp products, respectively, similar to M. nodulans ORS2060 and digestion with restriction enzymes revealed that the two isolates differed. The strains showed significantly higher nitrogenase activity and also improved nodulation and shoot nitrogen of the plants when inoculated to Macroptilum atropurpureum. CMCJ317 and CMSA322 formed nodules on C. juncea and M. atropurpureum under green house conditions and also significantly increased the nitrogen concentration in shoots. These findings show that the ability to establish symbiosis with legumes is more widespread in Methylobacterium.  相似文献   

3.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

4.
In this work, we report the cloning and sequencing of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. Sequence analysis revealed the presence of 20 open reading frames hupTUVhypFhupSLCDFGHJK hypABhupRhypCDEhupE. The physical and genetic organization of A. caulinodans ORS571 hydrogenase system suggests a close relatedness to that of Rhodobacter capsulatus. In contrast to the latter species, a gene homologous to Rhizobium leguminosarum hupE was identified downstream of the hyp operon. A hupSL mutation drastically reduced the high levels of hydrogenase activity induced by the A. caulinodans ORS571 wild-type strain in symbiosis with Sesbania rostrata plants. However, no significant effects on dry weight and nitrogen content of S. rostrata plants inoculated with the hupSL mutant were observed in plant growth experiments.  相似文献   

5.
Endophytic colonization in rice was induced using rhizobia. Dehusked seeds of rice hybrid, CORH2, were used as explants for induction of calli. MS medium was modified with 2,4-D (2.5 mg l(-1)) and kinetin (0.2 mg l(-1)) for callus induction. Well-developed calli were inoculated with Azorhizobium caulinodans strains ORS 571 and AA-SK-5 by means of imbibition. All treated calli had significant increases in protein content, total nitrogen and nitrogenase activity. Imbibition of ORS 571 had significant biochemical effect on the developing calli than AA-SK-5. The crop response study from the regenerated plantlets showed a positive correlation in yield than uninoculated control. The endophytic colonization was observed in all parts of the plants analyzed. Further, colonization was also confirmed by microtome sectioning.  相似文献   

6.
The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N(2) fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C(4) metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.  相似文献   

7.
Azorhizobium caulinodans ORS571 is able to nodulate roots and stems of the tropical legume Sesbania rostrata. An ORS571 Tn5 insertion mutant, strain ORS571-X15, had a rough colony morphology, was nonmotile, and showed clumping behavior on various media. When this pleiotropic mutant was inoculated on roots or stems of the host, no nodules developed (Nod-). Compared with the wild type, strain ORS571-X15 produced lipopolysaccharides (LPS) with an altered ladder pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggestive of a different O-antigen structure with a lower degree of polymerization. A cosmid clone, pRG20, that fully complemented all phenotypes of ORS571-X15 was isolated. With a 6-kb EcoRI subfragment of pRG20, clumping was relieved and nodulation was almost completely restored, but the strain was still nonmotile. LPS preparations from these complemented strains resembled the wild-type LPS, although minor quantitative and qualitative differences were evident. The sequence of the locus hit by the Tn5 in ORS571-X15 (the oac locus) revealed a striking homology with the rfb locus of Salmonella typhimurium, which is involved in O-antigen biosynthesis. The Tn5 insertion position was mapped to the oac3 gene, homologous to rfbA, encoding dTDP-D-glucose synthase. Biochemical assaying showed that ORS571-X15 is indeed defective in dTDP-D-glucose synthase activity, essential for the production of particular deoxyhexoses. Therefore, it was proposed that the O antigen of the mutant strain is devoid of such sugars.  相似文献   

8.
Gough  Clare  Vasse  Jacques  Galera  Christine  Webster  Gordon  Cocking  Edward  Dénarié  Jean 《Plant and Soil》1997,194(1-2):123-130
When interactions between diazotrophic bacteria and non-legume plants are studied within the context of trying to extend biological nitrogen fixation to non-legume crops, an important first step is to establish reproducible internal colonization at high frequency of these plants. Using Azorhizobium caulinodans ORS571 (which induces stem and root nodules on the tropical legume Sesbania rostrata), tagged with a constitutively expressed lacZ reporter gene, we have studied the possibilities of internal colonization of the root system of the model dicot Arabidopsis thaliana. ORS571 was found to be able to enter A. thaliana roots after first colonizing lateral root cracks (LRCs), at the points of emergence of lateral roots. Cytological studies showed that after LRC colonization, bacteria moved into the intercellular space between the cortical and endodermal cell layers of roots. In our experimental conditions, this LRC and intercellular colonization are reproducible and occur at high frequency, although the level of colonization at each site is low. The flavonoids naringenin and daidzein, at low concentrations, were found to significantly stimulate (at the p=0.01 level) the frequency of LRC and intercellular colonization of A. thaliana roots by A. caulinodans. The role in colonization of the structural nodABC genes, as well as the regulatory gene nodD, was studied and it was found that both colonization and flavonoid stimulation of colonization are nod gene-independent. These systems should now enable the various genetic and physiological factors which are limiting both for rhizobial colonization and for endophytic nitrogen fixation in non-legumes, to be investigated. In particular, the use of A. thaliana, which has many advantages over other plants for molecular genetic studies, to study interactions between diazotrophic bacteria and non-legume dicots, should provide the means of identifying and understanding the mechanisms by which plant genes are involved in these interactions.  相似文献   

9.
Sesbania species can establish symbiotic interactions with rhizobia from two taxonomically distant genera, including the Sesbania rostrata stem-nodulating Azorhizobium sp. and Azorhizobium caulinodans and the newly described Sinorhizobium saheli and Sinorhizobium teranga bv. sesbaniae, isolated from the roots of various Sesbania species. A collection of strains from both groups were analyzed for their symbiotic properties with different Sesbania species. S. saheli and S. teranga bv. sesbaniae strains were found to effectively stem nodulate Sesbania rostrata, showing that stem nodulation is not restricted to Azorhizobium. Sinorhizobia and azorhizobia, however, exhibited clear differences in other aspects of symbiosis. Unlike Azorhizobium, S. teranga bv. sesbaniae and S. saheli did not induce effective stem nodules on plants previously inoculated on the roots, although stem nodulation was arrested at different stages. For Sesbania rostrata root nodulation, Sinorhizobium appeared more sensitive than Azorhizobium to the presence of combined nitrogen. S. saheli and S. teranga bv. sesbaniae were effective symbionts with all Sesbania species tested, while Azorhizobium strains fixed nitrogen only in symbiosis with Sesbania rostrata. In a simple screening test, S. saheli and S. teranga bv. sesbaniae were incapable of asymbiotic nitrogenase activity. Thus, Azorhizobium can easily be distinguished from Sinorhizobium among Sesbania symbionts on the basis of symbiotic and free-living nitrogen fixation. The ability of Azorhizobium to overcome the systemic plant control appears to be a stem adaptation function. This last property, together with its host-specific symbiotic nitrogen fixation, makes Azorhizobium highly specialized for stem nodulation of the aquatic legume Sesbania rostrata.  相似文献   

10.
Following inoculation with Azorhizobium caulinodans ORS571 (pXLGD4), lateral root development of rice and colonization of lateral root cracks by bacteria were shown to be stimulated by the flavonoid naringenin. Rice seedlings growing aseptically in the presence of naringenin were inoculated with ORS571 (pXLGD4), carrying the lacZ reporter gene. By microscopic analysis of sections of inoculated rice roots, it has been demonstrated that the xylem of rice roots can be colonized by Azorhizobium caulinodans. We discuss whether this colonization of the xylem of rice roots by azorhizobia could provide a suitable niche for endophytic nitrogen fixation.  相似文献   

11.
We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica, A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from various Aeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732-734, 1985). The whole collection of Aeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence of puf genes in photosynthetic Aeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomene isolates, including strain BTAi1, and 19 reference strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.  相似文献   

12.
The symbiosis of Azorhizobium caulinodans and an annul legume Sesbania rostrata was recently found to be tolerant to cadmium pollution by an unknown mechanism. In this study, A. caulinodans ORS571 and ZY-20 showed much stronger tolerance to cadmium than a mutant ORS571-X15 and a common Rhizobium sp., with minimum inhibitory concentration values as high as 4 and 5 mM (versus 1 and 0.1 mM) on yeast extract mannitol agar medium, respectively. Although Cd uptake by all three strains of A. caulinodans were mostly from absorption rather than binding (both loosely or tightly) on cell surface, in resistant strains a higher portion of extractable Cd was bound on the cell surface vs. absorbed (about 1:2.5 ratio) compared to the sensitive mutant (about 1:35.1 ratio). These results suggest that certain level of metal exclusion by a permeability barrier was involved in the mechanism of resistance to Cd by A. caulinodans ORS571 and ZY-20. Over the 12-h period of cultivation in yeast extract mannitol agar medium with Cd addition, the Cd concentrations in the outer membrane and periplasm and spheroplast were the highest at the first 3 h, and declined steadily over time. The fact that Cd concentrations in spheroplast of all three strains were many folds higher than those in outer membrane and periplasm, suggests that extracellular sequestration was not the only mechanism of Cd tolerance in A. caulinodans. The decline of Cd concentrations was significantly faster and started earlier in strains ORS571 and ZY-20 than in ORS571-X15. This suggests a second, probably more substantial, mechanism involves active transport of the metal from the cell, e.g., some efflux system for maintaining homeostasis under cadmium stress.  相似文献   

13.
Stem Nodules in Aeschynomene indica and Their Capacity of Nitrogen Fixation   总被引:1,自引:0,他引:1  
There has been no report on stem nodules with nitrogen fixing activity. Aeschynomene indica produce nodules on the aerial parts, and the stem nodules proved to be capable of considerable nitrogen fixation [C2H4 produced c. 4 μmol (g fresh weight)-1 h-1]. The stem nodules embed reddish tissues, and a rod-shaped bacterium was isolated from the tissues. The bacterium was ascertained to form root and stem nodules on seedlings of A. indica.  相似文献   

14.
Summary A cosmid bank of ORS571, a diazotrophic bacterium capable of inducing aerial stem and root nodules on Sesbania rostrata, was constructed in the vector pLAFR1. A DNA probe carrying the Klebsiella pneumoniae nifA gene was used to identify nifA-and ntrC-like regions of ORS571 in the cosmid bank by colony hybridization. Cosmids carrying these regions were mapped by restriction endonuclease analysis, Southern blotting and transposon Tn5 mutagenesis. Selected Tn5 insertion mutations in the nifA/ntrC homologous regions were used for gene-replacement experiments and the resulting ORS571 mutants were examined for Nif, Fix and Ntr phenotypes. Two clearly distinct regulatory loci were thus identified and named nifA and ntrC. Plasmids carrying gene fusions of the ORS571 nifH and nifD genes to lacZ were constructed and the regulation of the ORS571 nifHDK promoter, and of the Rhizobium meliloti nifHDK promoter, was studied under varying physiological conditions in ORS571, ORS571 nifA::Tn5 and ORS571 nitrC::Tn5 strains. A model for the role of nifA and ntrC in the regulation of ORS571 nif and other nitrogen assimilation genes is proposed.  相似文献   

15.
16.
Improved conditions were used for the aseptic growth of Arabidopsis thaliana to investigate whether xylem colonization of A. thaliana by Azorhizobium caulinodans ORS571 might occur. When seedlings were inoculated with ORS571 (pXLGD4) tagged with the lacZ reporter gene, nearly all of the plants showed blue regions of ORS571 colonization at lateral root cracks (LRC). The flavonoids naringenin and liquiritigenin significantly stimulated colonization of LRC by ORS571. Blue bands of ORS571 (pXLGD4) bacteria were observed histochemically in the xylem of intact roots of inoculated plants. Detailed microscopic analysis of sections of primary and lateral roots from inoculated A. thaliana confirmed xylem colonization. Xylem colonization also occurred with an ORS571 nodC mutant deficient in nodulation factors. There was no significant difference in the percentage of plants with xylem colonization or in the mean length of xylem colonized per plant between plants inoculated with either ORS571 (pXLGD4) or ORS571::nodC (pXLGD4), with or without naringenin.  相似文献   

17.
The structure and expression of the early nodulin gene Enod2 from the stem-nodulated tropical legume Sesbania rostrata (SrEnod2) was examined. Genomic clones carrying the single SrEnod2locus were isolated and the DNA sequence of the gene was determined. The SrEnod2 gene was found to lack introns and to encode a protein consisting primarily of a 55-fold repeat of short proline-rich oligopeptides. A putative signal sequence, which may be responsible for targeting of the Enod2 protein to the cell wall, was found to precede this repeat. The temporal expression of the SrEnod2 gene was found to be different in S. rostrata stem versus root nodules induced by Azorhizobium caulinodans ORS571. SrEnod2 gene expression was shown to be induced specifically and rapidly by physiologically significant concentrations of exogenously supplied cytokinins. The SrEnod2 gene was also found to be highly expressed in S. rostrata crown gall tumors induced by wild-type Agrobacterium tumefaciens strains, but not in tumors induced by an A. tumefaciens strain carrying a mutation in the cytokinin biosynthesis gene 4. Implications of these observations with regard to cytokinin-induced plant gene expression and a possible role for cytokinin as a symbiotic signal are discussed.  相似文献   

18.
19.
A few legume species possess the ability to form N2-fixing nodules on stems as well as on roots. Little is known of the functional characteristics of stem nodules, or to what extent they differ from root nodules. Stem and root nodules of greenhouse-grown plants of Aeschynomene scabra (inoculated with the photosynthetic rhizobial strain BTAi 1) and Sesbania rostrata (inoculated with Azorhizobium caulinodans strain BTSr 3) were examined for assimilation of 14CO2 in the light and dark, soluble carbohydrate and starch contents, acetylene reduction activity, relative efficiency of nitrogenase in terms of uptake-hydrogenase activity, glutamine synthetase and glutamate synthase, and reduced N and ureide contents. In general, stem nodules possessed higher enzyme activities and metabolite contents than did root nodules, suggesting that they fix N2 with greater energy efficiency. This greater efficiency correlated with photosynthesis in the cortex of stem nodules. Differences in enzyme activities and metabolite contents between the stem nodules on A. scabra and those on S. rostrata probably result either from legume-species characteristics or from the photosynthetic capability of strain BTAi 1.  相似文献   

20.
In response to phenolic compounds exuded by the host plant, symbiotic Rhizobium bacteria produce signal molecules (Nod factors), consisting of lipochitooligosaccharides with strain-specific substitutions. In Azorhizobium caulinodans strain ORS571 these modifications are an O -arabinosyl group, an O -carbamoyl group, and an N -methyl group. Several lines of evidence indicate that the nodS gene located in the nodABCSUIJ operon is implicated in the methylation of Nod factors. Previously we have shown that NodS is an S -adenosyl- l -methionine (SAM)-binding protein, essential for the l -[3H-methyl]-methionine labelling of ORS571 Nod factors in vivo . Here, we present an in vitro assay showing that NodS from either A. caulinodans or Rhizobium species NGR234 methylates end-deacetylated chitooligosaccharides, using [3H-methyl]-SAM as a methyl donor. The enzymatic and SAM-binding activity were correlated with the nodS gene and localized within the soluble protein fraction. The A. caulinodans nodS gene was expressed in Escherichia coli and a glutathione- S -transferase—NodS fusion protein purified. This protein bound SAM and could methylate end-deacetylated chitooligosaccharides, but could not fully methylate acetylated chitooligosaccharides or unmethylated lipo-chitooligosaccharides. These data implicate that the methylation step in the biosynthesis pathway of ORS571 Nod factors occurs after deacetylation and prior to acylation of the chitooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号