首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of acid invertase carrot roots 32, 50 and 60 days old were, respectively, 5.7, 1.4 and 0.5 nkat/g fr. wt. When portions of such roots were excised and incubated in water for 20 hr the activities of the enzyme rose, respectively, to 9.7, 14.4 and 18.4. Fructose (50 mM), GA (30 μM) and kinetin (50 μM) affected the rise in invertase activity, GA stimulating it and fructose and kinetin decreasing it. The magnitude of these effects varied, however, with the age of the roots. Fructose had the highest effect in young non-tuberized roots while the effects of kinetin and GA were highest in mature tuberous roots. A 48 hr incubation of discs from mature roots in fructose plus kinetin reduced the rise in invertase activity by 75%; nevertheless, fructose plus kinetin could not abolish, even after 66 hr of incubation, the ca 10% increase in invertase activity produced by a 1 hr GA pulse treatment applied at 0 hr.  相似文献   

2.
The pattern of changes in the activity of various forms of invertase (acid soluble, alkaline, and acid insoluble) and the content of sugars (glucose, fructose, and sucrose) in the course of plant adaptation to prolonged (6 days) hypothermia (5°C) was investigated in the leaves of potato plants (Solanum tuberosum L., cv. Desiree) produced in vitro. We used the wild-type plants as a control and transformed plants with carbohydrate metabolism modified by inserting the yeast gene for invertase (apoplastic enzyme). In the course of adaptation to hypothermia, the activity of acid invertase was shown to rise and the content of sucrose and glucose to increase in the leaves of both genotypes. The greatest activity of acid invertases by the third day of cold acclimation corresponded to the peak level of sugars; in transformed plants, these characteristics exceeded those in the control plants. The transformed plants were more cold resistant than the control plants as suggested by the lack of disturbance of ion permeability of their membranes. It was concluded that owing to accumulation of low-molecular carbohydrates in the course of cold acclimation caused by activation of acid invertase cold resistant plants better adapt to temperature drop.  相似文献   

3.
Carrot (Daucus carota L.) cell suspension cultures grew well when provided with glucose, fructose, sucrose or raffinose. Galactose and melibiose supported less growth unless supplemented with glucose or fructose. In combination with ten different sugar mixtures, 2-deoxy-D-glucose (dGlc) inhibited culture growth. Inhibitory effects of dGlc were more marked with fructose, melibiose, raffinose or mixtures of these sugars in the culture medium. The presence of glucose or galactose reduced the inhibitory effects of dGlc on culture growth. Experiments with radioactive labelled sugars demonstrated that dGLc uptake was greater in the presence of fructose than glucose, and that growth inhibition of dGlc coincided with its uptake. Reduced protein content was also associated with the inhibitory effects of dGlc. Cultured cells contained lower levels of invertase (EC 3.2.1.26) activity during the active phase of culture growth (up to 25 days after subculture) than when growth had peaked and subsequently declined. Acid and alkaline invertase activities were not greatly reduced by exogenous hexoses. Invertase activity was greatest during periods of low protein content in all cultures and was inhibited by dGlc during the latter phases of the culture period. Free intracellular sugars throughout the culture period consisted mainly of glucose and fructose.  相似文献   

4.
Changes in peroxidases and glycosidases activities in cytoplasmic and ionically wall-bound fraction of developing seed of Hibiscus esculentum were studied. In both fractions, the activity of peroxiases assayed with ferulic acid and caffeic acid as a hydrogen donors, showed inverse correlation with the cell enlargement (sink size development phase). Activities of glycosidases, on the other hand, showed positive correlation with the sink development and sink filling period of the developing seed. The role of both the enzymes, glycosidases and peoxidase in seed development is discussed.  相似文献   

5.
The different invertase activities in embryogenic and non-embryogenic calli induced from explants (cotyledons, petioles, hypocotyls and leaves) obtained from Medicago arborea L. subsp. arborea seedlings were evaluated. Total invertase activity was lower in the calli with the greatest embryogenic capacity. The greatest fraction of this activity corresponded to soluble invertase. Wall-bound invertase showed maximum activity during the first two months of culture and the highest activities of this type were found in non-embryogenic calli. Extracellular invertase formed the smallest fraction of the total invertase activity evaluated. Acid and alkaline invertase activities were found in all calli but differences were detected between the embryogenic and non-embryogenic calli. In the former, the activity of both types of invertase exhibited a similar type of behaviour but different from that observed in the non-embryogenic calli. The calli with the greatest embryogenic capacity had very low levels of acid invertase and very high levels of the alkaline form. Soluble invertase – both acid and alkaline – accounted for the highest fraction after the first two months of culture and was present in lower amounts in the embryogenic than in the non-embryogenic calli. Regarding bound invertase, the highest production was seen to correspond to acid invertase. The extracellular invertase evaluated corresponded to the acid form since the alkaline extracellular invertase did not show any physiologically significant activity.  相似文献   

6.
S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2L–1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L–1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attainingS. cerevisiae cells suitable for invertase production were: temperature=30°C; pH=5.0; DO=3.3 mg O2L–1; (S)=0.5 g L–1 and sucrose added into the fermenter according to the equations: (V–Vo)=t2/16 or (V–Vo)=(Vf–Vo)·(e0.6t–1)/10.This work was supported by FAPESP  相似文献   

7.
P.M. Dey 《Phytochemistry》1985,25(1):51-53
High levels of ‘alkaline’ invertase activity occur in dormant mung bean seeds. During germination this activity decreases rapidly and is replaced by high ‘acid’ invertase activity. Cycloheximide prevented the formation of the latter activity and also inhibited germination. It is suggested that de novo synthesis of ‘acid’ invertase occurs during germination. Both enzymes bind to concanavalin A and, hence, are presumed to be glycoproteins. Affinity-purified enzyme samples show similar ratios of ‘acid’ and ‘alkaline’ invertase activities to the crude preparations indicating that specific enzyme inhibitors or activators are probably not involved in controlling the activities in vivo.  相似文献   

8.
Flowering plants of Begonia × cheimantha cv Emma and Begonia x hiemalis cv Schwabenland Red were exposed to different light levels (0, 40, 80 M m–2S–1) and to ethylene (150 nl 1–1) in growth cabinets. Increasing irradiance level increased the number of flower buds in both begonia species. The amount of 14C-assimilates translocated to flower buds and the acid invertase activity in flower buds and flowers also increased with increasing irradiance level. Conversely, treatment with ethylene decreased the accumulation of 14C in flowers and flower buds, but did not affect acid invertase activity. Ethylene accelerated abscission of flowers and flower buds and increased the number of cup shaped and small flowers.  相似文献   

9.
10.
Changes in insoluble or cell wall invertase and soluble invertase activity were examined during callus induction from tobacco pith-phloem explants and during callus proliferation on sucrose, glucose and fructose as carbon sources, or on transfer from culture on the hexoses to sucrose. In all cases there was a growth independent transitory increase in cell wall invertase early in culture. The magnitude of the increase was greatest in the presence of sucrose. Cell wall invertase was found to possess catalytic activity in situ, whether or not the tissue was grown on sucrose. It is hypothesized that the transitory increase in cell wall invertase plays a role in sucrose hydrolysis during wound respiration, which takes place early in culture.  相似文献   

11.
酸性转化酶作为蔗糖代谢中的关键酶,在还原糖积累型荔枝中表达及酶活性显著高于蔗糖积累型荔枝。为了全面了解酸性转化酶的生物学特征,该文通过运用生物信息学方法对荔枝果实酸性转化酶LcSAI基因的基本理化性质、蛋白二级结构、亲水性/疏水性、跨膜结构域、信号肽、磷酸化位点、保守结构域、系统进化进行系统的分析;利用qRT-PCR技术对LcSAI在'妃子笑'不同组织和果实不同发育阶段进行表达分析。结果表明:(1)荔枝果实酸性转化酶为定位于液泡的亲水性不稳定蛋白,无信号肽,其蛋白的二级结构主要有无规则卷曲和延伸链构件,并散布于整个蛋白;(2)在N-端含有一个跨膜区,包含两个保守结构域,位于N-端的Pfam DUF3357结构域和Glyco_32结构域,属于糖基水解酶基因家族32超家族;(3)系统进化分析结果显示LcSAI与龙眼酸性转化酶基因同源,不同组织间LcSAI表达水平为雄花根嫩茎种子嫩叶雌花果皮老叶,果实不同发育阶段LcSAI表达具有特异性。该研究为深入研究LcSAI果实酸性转化酶基因调控蔗糖代谢途径机理提供数据依据。  相似文献   

12.
Activities of the sucrose-cleaving enzymes, acid and neutral invertase and sucrose synthase, were measured in pods and seeds of developing snap bean (Phaseolus vulgaris L.) fruits, and compared with 14C-import, elongation and dry weight accumulation. During the first 10 d post-anthesis, pods elongated rapidly with pod dry weight increase lagging behind by several days. The temporal patterns of acid invertase activity and import coincided closely during the first part of pod development, consonant with a central role for this enzyme in converting imported sucrose during pod elongation and early dry weight accumulation. Later, sucrose synthase became the predominant enzyme of dry weight accumulation and was possibly associated with the development of phloem in pod walls. Sucrose synthase activity in seeds showed two peaks, corresponding to two phases of rapid import and dry weight accumulation; hence, sucrose synthase was associated with seed sink growth. Acid invertase activities in seeds were low and did not show a noticeable relationship with import or growth. All neutral invertase activities, during pod and seed development, were too low for it to have a dominant role in sucrose cleavage. Changes in activities of certain sucrose-cleaving enzymes appear to be correlated with certain sink functions, including import, storage of reserves, and biosynthetic activities. The data supports the association of specific sucrose-cleaving enzymes with the specific processes that occur in the developing pods and seeds of snap bean fruits; for example, acid invertase with pod elongation and sucrose synthase with fruit dry matter accumulation.  相似文献   

13.
Invertase liberation from Saccharomyces cerevisiae was detected after application of series of rectangular millisecond electric pulses. Maximal yield (60% from the activity in crude extract) was achieved within 8 h after pulsation. As shown by staining SDS-PAGE for invertase activity, the main part of liberated enzyme is a high molecular weight periplasmic invertase.  相似文献   

14.
15.
C. J. Pollock  E. J. Lloyd 《Planta》1977,133(2):197-200
The levels of invertase (E.C. 3.2.1.26) activity were measured throughout the development of the fourth leaf of Lolium temulentum. No neutral invertase activity was detected. Soluble acid invertase activity fell during leaf extension but rose again after ligule formation. This rise continued into senescence and was accompanied by the appearance of activity in the insoluble fraction. Evidence is presented that the insoluble activity was not an artefact of preparation, and that it represented an extracellular acid invertase. Fractionation of soluble invertase by gel filtration showed the appearance of a high molecular weight form at the time when insoluble activity was rising. The relationships between the different forms of the enzyme are discussed, together with their roles in leaf development.  相似文献   

16.
P. Hadley  D. R. Causton 《Planta》1984,160(2):97-101
Changes in percentage organic carbon content were assessed during the first five weeks of growth of Uniculm barley (Hordeum vulgare) and Brussels sprouts (Brassica oleracea) plants grown in controlled-environment conditions at two constant temperatures, 16° and 22°C. Foliage (leaf laminae), stem, and root material was assayed in both species, together with leaf sheaths of barley and cotyledon laminae of Brussels sprouts. In barley, there was a decline in percentage organic carbon content with increasing foliage age in plants grown at 22°C, but in sheath material there was no significant change at either temperature. Root material showed a decline in percentage carbon content at both growth temperatures, whereas stems showed the opposite trend. Similar results were found in Brussels sprouts, with an overall decline in percentage carbon content in foliage at 22°C and a rise in stem material at both growth temperatures. However, roots showed no significant change in percentage carbon content over the experimental period. The results demonstrate that percentage organic carbon content may change during plant growth.  相似文献   

17.
It is well known that post-bloom applications ofgibberellic acid (GA3) increase seedless grapeberry size by enhancing cell division, or cellenlargement, or both. As a consequence, total waterand sugar per berry are increased. Soluble invertaseis considered to be one of the key enzymes in theaccumulation of sugar in grape berries. To study apossible role of invertase in the GA3berry-sizing effect, different rates of post-bloomGA3 were applied to seedless grape cv. Sultanaand hexose concentration and invertase activity weremeasured. GA3 stimulated both parameters as earlyas 24 and 32 h after applications, respectively.Moreover, the increment in sugar content and enzymeactivity remained throughout the growing of the berries period and, at ripening, increases in hexosescontent (102%) and invertase activity (60%) weredetected when GA3 was applied at a rate of 45 ppm.At the same GA3 rate the pericarp cellsdoubled in size. Furthermore, positive correlationswere found between berry-size, invertase activity andhexose content, suggesting that GA3 stimulationof invertase could be one of the factors involved in theberry sizing-effect of GA3.  相似文献   

18.
Water shortage produced an early and large stimulation of acid- soluble invertase activity in adult maize leaves whereas cell wall invertase activity remained constant. This response was closely related to the mRNA level for only one of the invertase gene (Ivr2), encoding a vacuolar isoform. In parallel, four quantitative trait loci (QTLs) were detected for invertase activity under control and nine under stressful conditions. One QTL in control and one in stressed plants was located near to the lvr2 gene on chromosome 5. Other QTLs for invertase activity were found close to carbohydrate QTLs; some of them formed stress clusters.  相似文献   

19.
Summary Cell extracts ofCandida guilliermondii grown ind-xylose,l-arabinose,d-galactose,d-glucose,d-mannose and glycerol as sole carbon sources possessed NADPH-dependent aldose reductase activity, but no NADH-dependent activity was detected.d-xylose andl-arabinose were the best inducers of aldose reductase activity. The highest enzyme activity ind-xylose orl-arabinose-grown cells was observed first withl-arabinose followed byd-xylose as substrates of the enzymatic reaction. However, only low activity was found ind-glucose,d-mannose andd-galactose-grown cells, indicating that these carbon sources cause catabolite repression. Enzyme activities induced ind-xylose-grown cells were twice as high as those obtained from the cells under resting conditions. Furthermore, the level of induction of aldose reductase activity depended on the initial concentration ofd-xylose. The present study shows that aldose reductase activity may be efficiently induced by pentose sugars of hemicellulosic hydrolysates and weakly by hemicellulosic hexoses.  相似文献   

20.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号