首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over fifty years of research data from various sources were compiled and analyzed in order to determine the effect of urbanization on centipede diversity in the Wielkopolska-Kujawy Lowlands of western Poland. Urbanization has had a significant effect on species composition and community structures. However, it has not reduced overall species richness and diversity in the centipede fauna. The centipede fauna from built-up areas was found to be rich and varied. The habitats with the highest levels of species richness were the city of Poznań and the beech forests in the surrounding region.  相似文献   

2.
1. Spatiotemporal patterns of canopy true bug diversity in forests of different tree species diversity have not yet been disentangled, although plant diversity has been shown to strongly impact the diversity and distribution of many insect communities. 2. Here we compare species richness of canopy true bugs across a tree diversity gradient ranging from simple beech to mixed forest stands. We analyse changes in community composition by additive partitioning of species diversity, for communities on various tree species, as well as for communities dwelling on beech alone. 3. Total species richness (γ‐diversity) and α‐diversity, and abundance of true bugs increased across the tree diversity gradient, while diversity changes were mediated by increased true bug abundance in the highly diverse forest stands. The same pattern was found for γ‐diversity in most functional guilds (e.g. forest specialists, herbivores, predators). Temporal and even more, spatial turnover (β‐diversity) among trees was closely related to tree diversity and accounted for ~90% of total γ‐diversity. 4. Results for beech alone were similar, but species turnover could not be related to the tree diversity gradient, and monthly turnover was higher compared to turnover among trees. 5. Our findings support the hypothesis that with increasing tree diversity and thereby increasing habitat heterogeneity, enhanced resource availability supports a greater number of individuals and species of true bugs. Tree species identity and the dissimilarity of true bug communities from tree to tree determine community patterns. 6. In conclusion, understanding diversity and distribution of insect communities in deciduous forests needs a perspective on patterns of spatiotemporal turnover. Heterogeneity among sites, tree species, as well as tree individuals contributed greatly to overall bug diversity.  相似文献   

3.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

4.
Abstract

The diversity of saproxylic bryophyte species in beech forest stands from the wide region of the central Balkans (i.e. Serbia and Montenegro) was studied, and this study is the first of such a type in SE Europe. Comparison of preserved old‐growth and managed forests were made. Bryophyte species diversity is higher in primeval forest stands where the spectra of dead wood in various decaying stages of its dynamics are present. The ecological group of epixylic specialists is predominant among the bryophytes recorded. Threatened bryophyte species occur in old‐growth beech stands. The dead wood as habitat together with some other factors are extremely important for the surviving of epixylic bryophyte; so these species can be used as bioindicator bryophyte species of old‐growth or managed and structured forest ecosystems.  相似文献   

5.
6.
Uneven-aged management of conifer plantations is proposed as a way to increase the value of these forests for the conservation of bird diversity. To test this assumption, we compared the impact of four common silvicultural systems on bird communities, defined by cutblock size (large in even-aged silvicultural systems/smaller in uneven-aged silvicultural systems) and tree species composition (spruce/beech) in the Belgian Ardenne where beech forests have been replaced by spruce plantations. The abundances of bird species were surveyed in young, medium-aged and mature stands in 3–5 forests per silvicultural system (66 plots in all). The effect of silvicultural systems on bird species richness, abundance and composition were analysed both at the plot and at the silvicultural system levels. In plots of a given age, beech stands were richer in species. The composition of bird species at the plot level was explained by stand age and tree composition, but weakly so by stand evenness. For the silvicultural systems, bird species richness was significantly higher in even-aged and in beech forests, and bird species composition depended on the silvicultural system. This study emphasises the importance of maintaining native beech stands for birds and suggests that uneven-aged management of conifer plantations does not provide a valuable improvement of bird diversity comparatively with even-aged systems.  相似文献   

7.
Changes in the forest management practices have strongly influenced the distribution of species inhabiting old-growth forests. The epiphytic woodland lichen Lobaria pulmonaria is frequently used as a model species to study the factors affecting the population biology of lichens. We sampled 252 L. pulmonaria individuals from 12 populations representing three woodland types differing in their ecological continuity and management intensity in Estonia. We used eight mycobiont-specific microsatellite loci to quantify genetic diversity among the populations. We calculated the Sørensen distance to estimate genetic dissimilarity among individuals within populations. We revealed that L. pulmonaria populations have significantly higher genetic diversity in old-growth forests than in managed forests and wooded meadows. We detected a significant woodland-type-specific pattern of genetic dissimilarity among neighbouring L. pulmonaria individuals, which suggests that in wooded meadows and managed forests dominating is vegetative reproduction. The vegetative dispersal distance between the host trees of L. pulmonaria was found to be only 15–30 m. Genetic dissimilarity among individuals was also dependent on tree species and trunk diameter. Lobaria pulmonaria populations in managed forests included less juveniles compared to old-growth forests and wooded meadows, indicating that forest management influences life stage structure within populations. We conclude that as intensive stand management reduces the genetic diversity of threatened species in woodland habitats, particular attention should be paid to the preservation of remnant populations in old-growth habitats. Within managed habitats, conservation management should target on maintenance of the stand’s structural diversity and availability of potential host trees.  相似文献   

8.
Understanding the main factors driving bryophyte communities in forests is a worthwhile research area as it provides a framework within which to evaluate effective management options. Previous studies elucidated the role of forest structure, substrate, and climate, but their effect in a wide environmental context encompassing several types of forests is still unclear. The aim of this study was to assess the effect of climate, stand structure, substrates (tree trunks, deadwood, forest floor), and different forest types for species richness, species composition, and cover of bryophytes. Seven different types of Alpine forests dominated by spruce, larch-stone pine, silver-fir, Scots pine, oak, beech, and alder were selected. Bryophytes were sampled on tree trunks, deadwood, and forest floor. The importance of forest type, substrate, climate, and forest structure was determined by variance partitioning. Species richness and species composition were best explained by substrate (respectively 13% and 11%) and by forest type (respectively 13% and 11%). The bryophyte cover was primarily explained by the forest type (24%), and to a lesser extent by the climatic factors and stand structure. Overall, these results suggest that in this region ecologically based forest management might focus their efforts in protecting all the forest types and associated substrates. This means that forests of less economic value should also be preserved, and that acceptable silvicultural options should pay attention to the naturally available substrates. Too often, deadwood availability was a limiting substrate for bryophytes.  相似文献   

9.
10.
Deadwood-associated species are increasingly targeted in forest biodiversity conservation. In order to improve structural biodiversity indicators and sustainable management guidelines, we need to elucidate ecological and anthropogenic drivers of saproxylic diversity. Herein we aim to disentangle the effects of local habitat attributes which presumably drive saproxylic beetle communities in temperate lowland deciduous forests. We collected data on saproxylic beetles in 104 oak and 49 beech stands in seven French lowland forests and used deadwood, microhabitat and stand features (large trees, openness) as predictor variables to describe local forest conditions. Deadwood diversity and stand openness were consistent key habitat features for species richness and composition in deciduous forests. Large downed deadwood volume was a significant predictor of beetle species richness in oak forests only. In addition, the density of cavity- and fungus-bearing trees had weak but significant effects. We recommend that forest managers favor the local diversification of deadwood types, especially the number of combinations of deadwood positions and tree species, the retention of large downed deadwood and microhabitat-bearing trees in order to maximize the saproxylic beetle diversity at the stand scale in deciduous forests. To improve our understanding of deadwood-biodiversity relationships, further research should be based on targeted surveys on species-microhabitat relationships and should investigate the role of landscape-scale deadwood resources and of historical gaps in continuity of key features availability at the local scale.  相似文献   

11.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

12.
Olga Ferlian  Stefan Scheu 《Oikos》2014,123(10):1182-1191
Human impact on structure and functioning of ecosystems is rapidly increasing. Virtually all European forests are managed with major implications for diversity and structure of food webs. Centipedes (Chilopoda: Lithobiidae) are abundant arthropod predators in European temperate forest soils with a generalistic feeding behaviour. However, little is known on the variability in the prey spectrum of centipedes with land use and the responsible factors. Combining fatty acid (FA) analysis, which allows determination of the relative contribution of different prey to predator nutrition, and stable isotope analysis, providing insight into the trophic structure of decomposer food webs, we investigated variations in trophic niches of two dominant centipede species, Lithobius mutabilis and Lithobius crassipes, in differently aged beech and spruce forests. FA composition of the two centipede species differed significantly with bacterial marker FAs being more abundant in L. crassipes as compared to L. mutabilis. Differences were most pronounced in spruce as compared to beech forests. The results suggest that dense needle litter in coniferous forests may restrict prey availability to the larger L. mutabilis and confine foraging to the litter surface whereas the smaller L. crassipes is able to also exploit prey of deeper litter layers. Lithobius crassipes was significantly more enriched in 15N and 13C compared to L. mutabilis suggesting that, compared to L. mutabilis, the smaller L. crassipes occupies higher trophic levels and relies more on root derived carbon. The results indicate that trophic niches of centipedes vary in a species specific way between forest types with body size and habitat structure being major determinants of the variations in the prey spectrum. Combining techniques for delineating predator–prey interactions allowed insights into variations in trophic interrelationships and their driving forces in temperate forest soil food webs.  相似文献   

13.
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.  相似文献   

14.
The relationship between forest succession and microfungal diversity has been poorly studied. Fungi provide important ecosystem services that may deteriorate in deforested or highly disturbed forests. To determine the possible effects of deforestation and forest succession on microfungi, species diversity of hypocrealean fungi (Ascomycota) was compared in forest stands in Eastern Costa Rica representing three stages of succession: 1–2, 25–27 yr old, and an old growth forest. Species diversity in a second‐growth forest fragment surrounded by timber plantations and second‐growth forest was also compared to that of a stand surrounded by old growth forest. The results show that the overall diversity of hypocrealean fungi was inversely proportional to the age of the forest stand, and each family showed different successional trends. Clavicipitaceae was more diverse in the old‐growth forest and was positively related to the age of the forest stand. Nectriaceae was highly diverse in the 1‐ to 2‐yr‐old stand and less diverse in the old‐growth stand. Saprobic and plant pathogenic fungal species were more diverse in the 1‐ to 2‐yr‐old stand and their diversity was inversely proportional to the age of the forest stand. The diversity of insect pathogens was positively related to the age of the forest stand. The 20‐ to 22‐yr‐old forest fragment had the lowest number of species overall. Based on the data gathered in this study, hypocrealean fungal species diversity is related to the successional stage and fragmentation of tropical forest.  相似文献   

15.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

16.
Tree hollows are among the rarest habitats in today''s Central European managed forests but are considered key structures for high biodiversity in forests. To analyze and compare the effects of tree hollow characteristics and forest structure on diversity of saproxylic beetles in tree hollows in differently structured managed forests, we examined between 41 and 50 tree hollows in beech trees in each of three state forest management districts in Germany. During the two‐year study, we collected 283 saproxylic beetle species (5880 individuals; 22% threatened species), using emergence traps. At small spatial scales, the size of hollow entrance and the number of surrounding microhabitat structures positively influenced beetle diversity, while the stage of wood mould decomposition had a negative influence, across all three forest districts. We utilized forest inventory data to analyze the effects of forest structure in radii of 50–500 m around tree hollows on saproxylic beetle diversity in the hollows. At these larger spatial scales, the three forest management districts differed remarkably regarding the parameters that influenced saproxylic beetle diversity in tree hollows. In Ebrach, characterized by mostly deciduous trees, the amount of dead wood positively influenced beetle diversity. In the mostly coniferous Fichtelberg forest district, with highly isolated tree hollows, in contrast, only the proportion of beech trees around the focal tree hollows showed a positive influence on beetle diversity. In Kelheim, characterized by mixed forest stands, there were no significant relationships between forest structure and beetle diversity in tree hollows. In this study, the same local tree hollow parameters influenced saproxylic beetle diversity in all three study regions, while parameters of forest structure at larger spatial scales differed in their importance, depending on tree‐species composition.  相似文献   

17.
In order to clarify the recovery process of the subtropical forest on Okinawa Island, southern Japan, biomass accumulation and the successional trend of species diversity with time were investigated by comparing plots of old-growth and clear logged secondary forests. Self-thinning was an important factor in the development of young secondary forests, and the small variance in tree size within a stand was related to the stand not being fully stratified after clear-cutting. A large variance of size structure in old secondary and old-growth forests implies re-initiation of the understorey. Additionally, the trajectory of stand development indicated that the subtropical forest quickly recovered aboveground biomass, which reached its upper limit at about 50 years after disturbance. However, there was a large distinction in species diversity between the secondary forests and old-growth forests. The diversity of forest floor plants did not recover well after being clear-cut. This indicates that management of the subtropical forest should not only take timber-oriented tree species into account, but also the biodiversity in ground flora. The secondary forests were characterized by Castanopsis sieboldii and Schima wallichii, and the monopolization of C. sieboldii through secondary succession had a negative influence on species diversity. Distylium racemosum dominated at the late development stage and was considered a long-lived competing species that reduced the dominance of C. sieboldii and facilitated the co-occurrence of understorey species. Light-demanding pioneer tree species such as S. wallichii that regenerated after logging should be replaced by competitive effects of climax species, and thus relayed floristic change might increase species diversity along secondary succession.Nomenclature: Hatushima and Amano (1994).  相似文献   

18.
Montane tropical cloud forests, with their complex topography, biodiversity, high numbers of endemic species, and rapid rates of clearing, are a top global conservation priority. However, species distributions at local and landscape scales in cloud forests are still poorly understood, in part because few regions have been surveyed. Empirical work has focused on species distributions along elevation gradients, but spatial variation among forests at the same elevation is less commonly investigated. In this study, the first to compare tree communities across multiple Andean cloud forests at similar elevations, we surveyed trees in five ridge‐top forest reserves at the upper end of the ‘mid‐elevation diversity bulge’ (1900–2250 masl) in the Intag Valley, a heavily deforested region in the Ecuadorian Andes. We found that tree communities were distinct in reserves located as close as 10 to 35 km apart, and that spatially closer forests were not more similar to one another. Although larger (1500 to 6880 ha), more intact forests contained significantly more tree species (108–120 species/0.1 ha) than smaller (30 to 780 ha) ones (56–87 species/0.1 ha), each reserve had unique combinations of more common species, and contained high proportions of species not found in the others. Results thus suggest that protecting multiple cloud forest patches within this narrow elevational band is essential to conserve landscape‐level tree diversity, and that even small forest reserves contribute significantly to biodiversity conservation. These findings can be applied to create management plans to conserve and restore cloud forests in the Andes and tropical montane cloud forests elsewhere.  相似文献   

19.
We analysed patterns of woody species richness in Pinus sylvestris and Fagus sylvatica forests in Catalonia (NE Spain) from forestry inventory databank in relation to climate and landscape structure. Both types of forests are found within the same climatic range, although they have been managed following somewhat different goals. Overall, woody species richness significantly increased when conditions get closer to the Mediterranean ones, with milder temperatures. Differences between the two types of forests arose when comparing the relationship between richness and forest patch size. Woody species richness increased in pine forests with patch size, while the opposite trend was observed in beech forests. This pattern is explained by the different behaviour of structural canopy properties, since leaf area index and canopy cover showed a steeper increase with increasing forest patch size in Fagus forests than in Pinus ones. Accordingly, richness decreased with canopy cover in Fagus plots, but not in Pinus ones. We suggest that these differences would be related to management history, which may have enhanced the preservation of beech stands in larger forest landscape units.  相似文献   

20.
Changes in forest structure and species diversity throughout secondary succession were studied using a chronosequence at two sites in the Bolivian Amazon. Secondary forests ranging in age from 2 to 40 years as well as mature forests were included, making a total of 14 stands. Fifty plants per forest layer (understory, subcanopy, and canopy) were sampled using the transect of variable area technique. Mean and maximum height, total stem density, basal area, and species number were calculated at the stand level. Species diversity was calculated for each stand and for each combination of forest layer and stand. A correspondence analysis was performed, and the relationship between relative abundance of the species and stand age was modeled using a set of hierarchical models. Canopy height and basal area increased with stand age, indicating that secondary forests rapidly attain a forest structure similar in many respects to mature forests. A total of 250 species were recorded of which ca 50 percent made up 87 percent of the sampled individuals. Species diversity increased with stand age and varied among the forest layers, with the lowest diversity in the canopy. The results of the correspondence analysis indicated that species composition varies with stand age, forest layer, and site. The species composition of mature forests recovered at different rates in the different forest layers, being the slowest in the canopy layer. Species showed different patterns of abundance in relation to stand age, supporting the current model of succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号