首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis, processing, and intracellular transport of lysosomal acid phosphatase was studied using an in vitro cell-free translation system, pulse-chase experiments with primary cultured rat hepatocytes and subcellular fractionation techniques of rat liver after pulse-labeling with [35S]methionine in vivo. The single polypeptide of 45 kDa translated in the cell-free system from membrane-bound polysomal RNAs was converted to the 64 kDa form when the translation was carried out in the presence of microsomal vesicles. Pulse-chase experiments using cultured rat hepatocytes showed that acid phosphatase is initially synthesized as an endo-beta-N-acetylglucosaminidase H (Endo H)-sensitive form of 64 kDa, and processed via an Endo H-sensitive intermediate form of 62 kDa to an Endo H-resistant form with a 67 kDa mass. Phase separation with Triton X-114 showed that both the 64 and 67 kDa forms have hydrophobic properties. Treatment of the cells with chloroquine or tunicamycin, drugs which enhance the secretion of lysosomal hydrolases, had no effect on the normal transport of acid phosphatase to lysosomes. Acid phosphatase did not contain the phosphorylated high mannose type of oligosaccharide chains observed in cathepsin D. Subcellular fractionation experiments in conjunction with pulse-labeling in vivo showed that the acid phosphatase of the 67 kDa form was present in the Golgi heavy fraction (GF3) and the Golgi light fraction (GF1+2) enriched in cis and trans Golgi elements, respectively, at 30 min after the administration of [35S]methionine. Simultaneously, this polypeptide was also found in the lysosomal membrane fraction, thereby indicating that acid phosphatase is delivered to lysosomes in a membrane-bound form, immediately after reaching the trans-Golgi region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

3.
Intracellular transport of a newly synthesized asialoglycoprotein receptor was studied biochemically using a monospecific antibody for the receptor. Pulse-labeling by intravenous injection of [3H]leucine and pulse-chasing after 10 min by cycloheximide injection resulted in the maximal labeling of the receptor in the rough microsomes at 15 min, in the smooth microsomes and the heavy Golgi subfraction (GF3) at 25 min and in the intermediate plus light Golgi subfraction (GF1+2) at 30 min. By 60 min, the labeling in GF1+2 had decreased and leveled off. In the plasma membrane fraction, the labeled receptor first appeared at 20 min, increased rapidly and also reached a constant level at 40-60 min. Intracellular movement of the newly synthesized receptor in the GF1+2 and plasma membrane fractions was also investigated by purifying the receptor protein from the GF1+2 and plasma membrane fractions by affinity chromatography. It was revealed that the specific radioactivities of the receptor in the two fractions become equilibrated after 60-120 min. The receptor of the various membrane fractions was also pulse-labeled in vivo for 20 min simultaneously with [3H]glucosamine and [14C]leucine, and pulse-chased for the following 40 min. After pulse-labeling for 20 min, the ratio of the radioactivity of [3H]glucosamine or [3H]sialic acid to [14C]leucine of the receptor from the rough and smooth microsomes, and GF3, GF2, and GF1 increased in that order. That of the receptor from the plasma membrane fraction was infinitely higher, because, while a significant amount of 3H-radioactivity was incorporated into the receptor in the Golgi apparatus, only a negligible amount of 14C-radioactivity was incorporated into the same receptor in the plasma membrane due to the delay in the arrival of [14C]leucine labeled receptor to the plasma membrane. After chasing for 40 min, however, the same radioactivity ratios of the GF1 and plasma membrane fractions approached each other. All these results strongly suggest that the distribution of the newly synthesized receptor becomes rapidly equilibrated between the trans-Golgi components and plasma membranes probably by repeated recycling of the receptor protein between the two membranes.  相似文献   

4.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

5.
The cation-independent mannose 6-phosphate receptor (MPRCI) functions in the packaging of both newly made and extracellular lysosomal enzymes into lysosomes. The subcellular location of MPRCI reflects these two functions; receptor is found in the Golgi complex, in endosomes, and on the cell surface. To learn about the intracellular pathway followed by surface receptor and to study the relationship between the receptor pools, we examined the entry of the surface MPRCI into Golgi compartments that contain sialyltransferase. Sialic acid was removed from surface-labeled K562 cultured human erythroleukemia cells by neuraminidase treatment. When the cells were returned to culture at 37 degrees C, surface MPRCI was resialylated by the cells with a half-time of 1-2 h. Resialylation was inhibited by reduced temperature, a treatment that allows surface molecules to reach endosomes but blocks further transport. These results indicate that surface MPRCI is transported to the sialyltransferase compartment in the Golgi complex. After culture at 37 degrees C, a small fraction (10-20%) of the resialylated receptor was found on the cell surface. Because a similar fraction of the total receptor pool is found on the cell surface, it is likely that cell surface MPRCI mixes with the cellular pool after resialylation. These data also support the idea that extracellular and newly made lysosomal enzymes are transported to lysosomes through a common compartment.  相似文献   

6.
We have examined the distribution of the cation-independent mannose 6-phosphate receptor and five acid hydrolases in early and late endosomes and a receptor-recycling fraction isolated from livers of estradiol-treated rats. Enrichment of mannose 6-phosphate receptor mass relative to that of crude liver membranes was comparable in membranes of early and late endosomes but was even greater in membranes of the receptor-recycling fraction. Enrichment of acid hydrolase activities (aryl sulfatase, N-acetyl-beta-glucosaminidase, tartrate-sensitive acid phosphatase, and cholesteryl ester acid hydrolase) and cathepsin D mass was also comparable in early and late endosomes but was considerably lower in the receptor-recycling fraction. The enrichment of two acid hydrolases, acid phosphatase and cholesteryl ester acid hydrolase, in endosomes was severalfold greater than that of the other three examined, about 40% of that found in lysosomes. Acid phosphatase and cholesteryl ester acid hydrolase were partially associated with endosome membranes, whereas cathepsin D was found entirely in the endosome contents. These findings raise the possibility that lysosomal enzymes traverse early endosomes during transport to lysosomes in rat hepatocytes and suggest that the greater enrichment of some acid hydrolases in endosomes is related to their association with endosome membranes. Despite the substantial enrichment of lysosomal enzymes in hepatocytic endosomes, we found that two, cholesteryl ester acid hydrolase and cathepsin D, did not degrade cholesteryl esters and apolipoprotein B-100 of endocytosed low density lipoproteins in vivo, presumably because they are inactive at the pH within endosomes.  相似文献   

7.
Two procedures were used to isolate hepatocytic Golgi fractions from rat liver. One procedure yields a light Golgi fraction (GF1 + 2) and the other "intact" stacks of cisternae. Triglyceride fatty acids in nascent very low density lipoproteins (VLDL) were labeled by injection of [3H]palmitate intravenously, and radiolabeled lipoproteins were injected as markers of potentially contaminating endosomes. GF1 + 2 fractions were enriched manyfold in the endosomal markers, indicative of substantial endosomal contamination, whereas intact Golgi fractions from the same livers were about 7% as contaminated. By electron microscopy, GF1 + 2 fractions contained mainly multivesicular bodies (MVBs), together with some Golgi-derived secretory vesicles. The small endosomal contamination of intact Golgi fractions was further reduced by a simple modification of the procedure, which removed most entrained endosomes. The surface constituents of Golgi VLDL (d less than 1.010 g/ml) released from these highly purified intact Golgi fractions differed from those of plasma VLDL. Golgi VLDL contained fivefold less unesterified cholesterol than plasma VLDL, but twofold more phospholipids. Golgi VLDL and plasma VLDL contained similar amounts of cholesteryl esters and triglycerides. The protein content of Golgi VLDL was substantially lower than that of plasma VLDL. ApoB-100 and apoB-48 were similarly represented, but nascent VLDL contained less of the C apolipoproteins. ApoA-I was present mainly as the proprotein in Golgi VLDL, but was virtually lacking in plasma VLDL. ApoE comprised about 22% of the protein mass of Golgi VLDL as well as plasma VLDL; the distribution of apoE isoforms was also similar. Apolipoproteins E and pro A-I released from ruptured Golgi cisternae were largely bound to the Golgi VLDL or were associated with Golgi membranes. Particles resembling low density lipoproteins (LDL) and high density lipoproteins (HDL) were not seen by electron microscopy in contents of intact Golgi fractions. These observations indicate that nascent Golgi VLDL are the primary particulate precursors of rat plasma lipoproteins of hepatocytic origin, and suggest that particles with the density of plasma HDL and LDL do not exist within the secretory pathway of normal hepatocytes. Thus, the results of this research on the properties of nascent plasma lipoprotein precursors contained within uncontaminated hepatocytic Golgi fractions differ substantially from previous published work.  相似文献   

8.
In foregoing studies, we reported that LGP107, a major lysosomal membrane glycoprotein in the rat liver, distributes in and circulates continuously throughout the endocytic membrane system (endosomes, lysosomes and plasma membrane), in hepatocytes (1,2). In the present study we examined whether acid phosphatase (APase), an enzyme that is transported to lysosomes as a transmembrane protein, passes through the cell surface during intracellular transport, because transport of newly synthesized APase to lysosomes involves the passage of endosomes containing a ligand which is internalized via receptors on the cell surface and is finally dispatched to lysosomes for degradation (3). When localization of APase in rat hepatocytes was investigated by immunoelectron microscopy, APase was found to be localized in lysosomes and endosomes, but not in coated pits on the cell surface, which are positive for LGP107, and from which antibodies for LGP107 are internalized. Further, unlike LGP107, newly synthesized APase was not detected in plasma membranes isolated from livers of rats given [35S]methionine, and when cultured hepatocytes were exposed to 125I-labeled anti APase IgG at 37 degrees C, there was no transfer of the antibody to lysosomes even after 24 h incubation. Therefore, these results indicate that intracellular movement of APase does not involve cell surface passage in rat hepatocytes, and clearly differs from the recent report that human APase is transported to lysosomes via the cell surface in BHK cells transfected with its cDNA (4).  相似文献   

9.
Cultured cells derived from a mouse adrenocortical tumor transplant are unspecialized in appearance, but produce basal levels of steroids and demonstrate a near-immediate steroidogenic response to ACTH. There is biochemical evidence that ACTH induces increases in the uptake of serum lipoproteins by these cells and that this material is hydrolyzed in lysosomes to free cholesterol, a precursor for steroid end products. To investigate morphologically the role of lysosomes in the steroidogenic activity of these cells, cultures were incubated for 4 h with and without ACTH, then processed for the ultrastructural localization of acid phosphatase (ACPase), a marker enzyme for lysosomes, and for GERL, the lysosome-forming subcompartment of the Golgi, and examined by TEM and HVEM. Steroid output was determined by a fluorometric technique. Unstimulated cells secreted basal levels of steroids. By TEM, large endosomes, some containing semi-compact material and ACPase reaction product, were occasionally seen at the cell periphery and in the Golgi region. The Golgi and GERL were poorly developed. Residual bodies, a few of them ACPase+, appeared in the Golgi region and in microtubule-associated clusters near the cell membrane. ACTH-stimulated cells secreted steroids at 8-10 fold basal values. In TEM records, they displayed numerous ACPase+ endosomes between the cell periphery and the Golgi. The Golgi and GERL regions appeared to be hypertrophied and many large, inclusion-containing, strongly ACPase+ residual bodies appeared here and in elongated microtubule-containing cell processes. HVEM micrographs showed more definitively that ACTH produced distinct increases in the size of GERL and in the number of ACPase+ organelles. Our results suggest that in unstimulated cells, endosomes, presumably containing media-derived material, gain lysosomal enzymes in or near GERL, are transformed to residual bodies as their contents are hydrolyzed, and are subsequently translocated by microtubules to the cell periphery for exocytosis. ACTH appears to intensify all of these effects. The "giant" lysosomes seen in stimulated cells may result from a fusion of smaller lysosomes. Their amorphous contents may reflect an inefficient hydrolysis of LDL to free cholesterol.  相似文献   

10.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

11.
The intracellular trafficking and proteolytic processing of the membrane‐bound amyloid precursor protein (APP) are coordinated events leading to the generation of pathogenic amyloid‐beta (Aβ) peptides. The membrane transport of newly synthesized APP from the Golgi to the endolysosomal system is not well defined, yet it is likely to be critical for regulating its processing by β‐secretase (BACE1) and γ‐secretase. Here, we show that the majority of newly synthesized APP is transported from the trans‐Golgi network (TGN) directly to early endosomes and then subsequently to the late endosomes/lysosomes with very little transported to the cell surface. We show that Arl5b, a small G protein localized to the TGN, and AP4 are essential for the post‐Golgi transport of APP to early endosomes. Arl5b is physically associated with AP4 and is required for the recruitment of AP4, but not AP1, to the TGN. Depletion of either Arl5b or AP4 results in the accumulation of APP, but not BACE1, in the Golgi, and an increase in APP processing and Aβ secretion. These findings demonstrate that APP is diverted from BACE1 at the TGN for direct transport to early endosomes and that the TGN represents a site for APP processing with the subsequent secretion of Aβ.   相似文献   

12.
Lysosomes are dynamic organelles receiving membrane traffic input from the biosynthetic, endocytic and autophagic pathways. They may be regarded as storage organelles for acid hydrolases and are capable of fusing with late endosomes to form hybrid organelles where digestion of endocytosed macromolecules occurs. Reformation of lysosomes from the hybrid organelles involves content condensation and probably removal of some membrane proteins by vesicular traffic. Lysosomes can also fuse with the plasma membrane in response to cell surface damage and a rise in cytosolic Ca 2+ concentration. This process is important in plasma membrane repair. The molecular basis of membrane traffic pathways involving lysosomes is increasingly understood, in large part because of the identification of many proteins required for protein traffic to vacuoles in the yeast Saccharomyces cerevisiae. Mammalian orthologues of these proteins have been identified and studied in the processes of vesicular delivery of newly synthesized lysosomal proteins from the trans-Golgi network, fusion of lysosomes with late endosomes and sorting of membrane proteins into lumenal vesicles. Several multi-protein oligomeric complexes required for these processes have been identified. The present review focuses on current understanding of the molecular mechanisms of fusion of lysosomes with both endosomes and the plasma membrane and on the sorting events required for delivery of newly synthesized membrane proteins, endocytosed membrane proteins and other endocytosed macromolecules to lysosomes.  相似文献   

13.
Unmodified procedures for isolation of fractions rich in Golgi elements from other tissues have not proved applicable to the rat ventral prostate because of the tendency of membranous material to aggregate. We have devised a new procedure whereby: 1) a Golgi rich fraction from rat ventral prostate was released by a gentle two-step homogenization and isolated by centrifugation through discontinuous sucrose density gradients; 2) the specific activity of UDP-galactose: glycoprotein galactosyltransferase increased 69-fold in this fraction; 3) the isolated Golgi fraction was reasonably free from mitochondria, lysosomes, endoplasmic reticulum and plasma membranes as shown by the relatively low activities of marker enzymes; 4) the specific activities of acid phosphatase and 5'-nucleotidase in the Golgi rich fraction was 4 times greater than that in prostate homogenate. Both enzymes are secretory products and their presence in Golgi elements is probably associated with their packaging in secretory granules.  相似文献   

14.
A S Ra?khel' 《Tsitologiia》1975,17(7):748-753
The formation of primary and secondary lysosomes in digestive cells of midgut of the tick H. asiaticum was investigated using ultracytochemical methods for acid phosphatase. This enzyme is synthesized in the rough endoplasmic reticulum cisternae to be concentrated in the Golgi complex. Vesicles 0.1-0.15 mum in diameter filled with the enzyme are propagated from the distal Golgi cisternae which are primary lysosomes. Secondary lysosomes are produced in result of fusion of primary lysosomes with heterophagosomes that appear during endocytosis. Another type of structures responsible for transport of lysosomal enzymes into heterophagosomes is represented by dense bodies 0.3-0.5 mum in size. These are rich in acid phosphatase being different stages of heterophagolysosomes and telolysosomes.  相似文献   

15.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

16.
The pathways involved in targeting membrane proteins to lysosomes are extraordinarily complex. Newly synthesized proteins in the ER are transported to the Golgi complex, and upon arrival at the trans Golgi network (TGN) are targeted either directly to endosomes, or first to the cell surface from where they can be rapidly internalized into the endocytic pathway for delivery to lysosomes. The routes to endosomes are specified by sorting motifs in the cytoplasmic tails of the proteins that are recognized at the TGN or plasma membrane. The molecular details of these processes are just emerging.  相似文献   

17.
Presence of soluble acid phospholipase A1 and A2 was confirmed in the (lysosomes + mitochondria) fraction of cultured human amnion cell line, FL cells. Activity of these enzymes and acid phosphatase was detected in the cytosol fraction of FL cells harvested at 59 hr after infection with measles virus, indicating that these enzymes in the (lysosomes + mitochondria) fraction were released to the cytosol fraction during the maturation of measles virus in the cells. Further, it was confirmed that the release of acid phospholipase A1 and A2 almost paralleled the development of cytopathic effect.  相似文献   

18.
The origin of the membranes of autophagic vacuoles (AV) and acquisition of acid phosphatase into AV's were studied in vinblastine-induced autophagocytosis (VBL, 50 mg/kg, i.p.) in mouse hepatocytes. Using unbuffered OsO4, very intense staining was observed in the outer cisternae of the Golgi apparatus and also frequently in the cavity between the double membranes obviously destined to form AV's as well as in the cavity between the double membranes of newly formed AV's. There may occur a transformation process in the membranes limiting an AV analogous to that observed at the Golgi cisternae. The transformation of the outer AV membrane occurs independently of fusion with lysosomes. Inosine diphosphatase activity was localized within the cisternae and on the membranes of the endoplasmic recticulum and occasionally within the innermost cisterna of the Golgi apparatus. The results together with the unbuffered OsO4-staining pattern suggest that the membranes of most AV's are derived from the transformed smooth surfaced cisternae of the endoplasmic reticulum which do not have inosine diphosphatase activity. Acid phosphatase activity was localized in lysosomes, occasionally within the innermost cisternae of the Golgi apparatus, between the double membranes of a few newly formed AV's and within most older single membranes of a few newly formed AV's and within most older single membrane-limited AV's. VBL did not prevent the fusion of lysosomes with AV's.  相似文献   

19.
A protocol employing discontinuous sucrose gradient centrifugation was developed to prepare light mitochondrial (L) and Golgi fraction endosomes from simultaneously prepared parent L and microsomal fractions. As judged by the concentration of labeled hormone postinjection, L intermediate and heavy endosome subfractions were 40- to 175-fold purified and Golgi intermediate and heavy endosome subfractions were 30- to 45-fold purified. On electron microscopy, L endosomal fractions contained a predominance of lipoprotein-filled vesicles and were less heterogeneous than corresponding Golgi endosomal fractions. All endosomal fractions were enriched in receptors for insulin and prolactin but binding sites for the former were more broadly distributed in other subfractions than those for the latter. On Percoll gradient centrifugation, L endosomal fractions yielded one peak (rho 1.057) corresponding to the heavier of two peaks seen in Golgi endosomal fractions. The protein composition of high density L and Golgi endosomes, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was similar. The bulk of marker enzymes assayed did not migrate with the endosomal components. Combined acid phosphatase cytochemistry and electron microscope radioautography established that about 80% of the L endosomes contained no acid phosphatase. By affinity labeling and immunological titration with insulin receptor antibody, insulin receptors were identical in L and Golgi endosomes. Insulin-stimulable receptor kinase was demonstrable in both L and Golgi endosome fractions. Following in vivo insulin administration, the insulin receptor kinase in both L and Golgi endosomes was significantly activated. This activated state was not inhibited by a large excess of antiserum to insulin and thus not due to insulin contaminating the partially purified receptor preparation. These observations are compatible with the maintenance and/or initiation of hormone-dependent phosphorylations intracellularly.  相似文献   

20.
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号