首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isoleucine-23 residue of human epidermal growth factor (hEGF) was substituted by a variety of amino acid residues and the receptor-binding activities of variant hEGFs were determined by the use of human KB cell. Tight receptor binding was found of variants with hydrophobic amino acid residues in position 23. The size of the isoleucine residue was nearly optimum for the receptor binding as compared with other hydrophobic residues. The structure analysis by two-dimensional nuclear magnetic resonance spectroscopy showed that the substitution at position 23 only slightly affected the tertiary structure of hEGF. These indicate that the side chain of isoleucine residue in position 23, which is exposed on the protein surface, directly binds to a hydrophobic pocket of the receptor.  相似文献   

2.
The third disulfide loop (amino acids 33 to 42) of human epidermal growth factor (hEGF) encompasses the region of highest amino acid conservation among all of the EGF-like family of molecules. The importance of some of these highly conserved residues for the maintenance of biological activity, especially the aromatic amino acid tyrosine at position 37, has until now been considered essential on the basis of previous studies with the EGF-like molecule transforming growth factor alpha. Variants at the Tyr-37 position of hEGF were constructed by site-directed mutagenesis. The substituting amino acids were phenylalanine, histidine, serine, alanine, aspartic acid, arginine, and glycine. The variants were tested for their ability to competitively displace native [125I]hEGF from its receptor and to stimulate the protein-tyrosine kinase activity of the receptor; the order of efficacy of substituting amino acids was Phe greater than His greater than Ser greater than Ala greater than Asp greater than Arg greater than Gly in both assays. All were effective, with no or only moderate reduction in potency, in stimulating the incorporation of [3H]thymidine into acid-insoluble material of quiescent mouse A31 cells. Only Tyr-37----Ala, Tyr-37----Arg and Tyr-37----Gly were slightly less potent in the cell assay. Thus, neither tyrosine nor another aromatic amino acid at position 37 in hEGF is essential for full biological activity.  相似文献   

3.
4.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In a preliminary study we demonstrated that the formation of the epidermal growth factor (EGF) receptor-ligand complex requires the participation of the highly conserved arginine 41 side chain of the growth factor peptide (Engler, D.A., Montelione, G.T., and Niyogi, S.K. (1990) FEBS Lett. 271, 47-50). In an attempt to gain further insight into the nature of this interaction(s), we used both site-directed mutagenesis and chemical modification reagents to produce human EGF (hEGF) analogues with altered chemical properties of the residue 41 side chain. Eight mutant analogues of hEGF were generated, substituting arginine 41 with lysine, glutamine, isoleucine, tyrosine, glycine, alanine, aspartate, or glutamate. Although each of the mutant analogues was able to displace wild-type hEGF fully in receptor competition binding assays, affinity of the receptor for the mutants was substantially reduced, varying from 0.4 to less than 0.01% of that observed for wild-type growth factor. At sufficiently high concentrations these mutants were able to stimulate DNA synthesis in mouse keratinocytes. Substitution of lysine for arginine 41 reduced the receptor affinity 250-fold from that observed for wild type, despite retention of the positive electrostatic charge. The lysine substitution leaves a reactive amine at position 41 and made it possible, using amine-specific chemical modification reagents, to produce selected arginine homologues that were tested for their effects on receptor binding, receptor tyrosine kinase activation, and stimulation of DNA synthesis in mouse keratinocytes. The reaction of lysine 41 with methyl acetimidate resulted in a lysineacetamidine product which only partially restored activity of the lysine hEGF mutant. However, reaction with O-methylisourea resulted in generation of an arginine 41 homologue (homoarginine) which restored full activity. The results indicate that the chemical properties inherent in the guanidinium group of the arginine 41 side chain of hEGF are responsible for optimal receptor-ligand association.  相似文献   

6.
Site-directed mutagenesis was employed to examine the function of two highly conserved residues, Tyr-37 and Arg-41, of human EGF (hEGF) in receptor binding. Both a conservative change to phenylalanine and a semi-conservative change to histidine at position 37 yield proteins with receptor affinity similar to wild-type hEGF. A non-conservative change to alanine results in a molecule with about 40% of the receptor affinity, indicating that an aromatic residue is not essential at this position. Both conservative (to lysine) and non-conservative (to alanine) substitutions at position 41 drastically reduced receptor binding to less than 0.5% of the wild-type activity. 1D-NMR data indicate that the replacement of Arg-41 by lysine does not significantly alter the native protein conformation. Thus, Arg-41 may be directly involved in ligand receptor interaction, whereas the side chain of Tyr-37, although possibly important structurally, is not essential for receptor binding.  相似文献   

7.
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.  相似文献   

8.
Synthesis and structure-activity study of myxoma virus growth factor   总被引:1,自引:0,他引:1  
Y Z Lin  X H Ke  J P Tam 《Biochemistry》1991,30(13):3310-3314
Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of EGF receptor in A431 cells and the stimulation of [3H]-thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in beta-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH2-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.  相似文献   

9.
Murine and human epidermal growth factor receptors (EGFRs) bind human EGF (hEGF), mouse EGF (mEGF), and human transforming growth factor alpha (hTGF-alpha) with high affinity despite the significant differences in the amino acid sequences of the ligands and the receptors. In contrast, the chicken EGFR can discriminate between mEGF (and hEGF) and hTGF-alpha and binds the EGFs with approximately 100-fold lower affinity. The regions responsible for this poor binding are known to be Arg(45) in hEGF and the L2 domain in the chicken EGFR. In this study we have produced a truncated form of the hEGFR ectodomain comprising residues 1-501 (sEGFR501), which, unlike the full-length hEGFR ectodomain (residues 1-621, sEGFR621), binds hEGF and hTGF-alpha with high affinity (K(D) = 13-21 and 35-40 nM, respectively). sEGFR501 was a competitive inhibitor of EGF-stimulated mitogenesis, being almost 10-fold more effective than the full-length EGFR ectodomain and three times more potent than the neutralizing anti-EGFR monoclonal antibody Mab528. Analytical ultracentrifugation showed that the primary EGF binding sites on sEGFR501 were saturated at an equimolar ratio of ligand and receptor, leading to the formation of a 2:2 EGF:sEGFR501 dimer complex. We have used sEGFR501 to generate three mutants with single position substitutions at Glu(367), Gly(441), or Glu(472) to Lys, the residue found in the corresponding positions in the chicken EGFR. All three mutants bound hTGF-alpha and were recognized by Mab528. However, mutant Gly(441)Lys showed markedly reduced binding to hEGF, implicating Gly(441), in the L2 domain, as part of the binding site that recognizes Arg(45) of hEGF.  相似文献   

10.
Dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2), dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2) and deltorphin I (Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2) are the first naturally occurring peptides highly potent for and almost specific to the mu- and delta-opioid receptors, respectively. The amino-terminal domains Tyr-D-X-Phe (where X is either Ala or Met) of these peptides behave as selective and potent mu-receptor ligands. Routing of Tyr-D-X-Phe to the delta- or the mu- receptor is associated with the presence or the absence at the C-terminus of an additional hydrophobic and negatively charged tetrapeptide by-passing the mu-addressing ability of the amino-terminal moiety. A study of 20 Tyr-D-X-Phe-Y-NH2 analogs with substitution of X and Y by neutral, hydrophobic, aromatic amino acids as well as by charged amino acid residues shows that tetrapeptides maintain high binding affinity and selectivity for the mu-opioid receptor. Although residue in position 4 serves a delta-address function, the tripeptide motif at the C-terminus of dermenkephalin and deltorphin I are critical components for high selectivity at delta-opioid receptor. Results demonstrate that mu- and delta-opioid receptors share topologically equivalent ligand-binding domains, or ligand-binding sequences similarities, that recognized Tyr-D-X-Phe as a consensus message-binding sequence. The delta-receptor additionally contains a unique address subsite at or near the conserved binding domain that accommodates the C-terminal tetrapeptide motif of dermenkephalin and deltorphin I.  相似文献   

11.
Three site-directed mutants of human epidermal growth factor, Leu-26----Gly, Leu-47----Ala, and Ile-23----Thr, were examined for their ability to stimulate the protein-tyrosine kinase activity of the epidermal growth factor receptor. The receptor binding affinities of the mutant growth factors were 20- to 50-fold lower, as compared to wild-type growth factor. At saturating concentrations of growth factor, the velocities of the phosphorylation of exogenously added substrate and receptor autophosphorylation were significantly lower with the mutant analogs, suggesting a partial 'uncoupling' of signal transduction. The mutant analogs were shown to compete directly with the binding of wild-type, resulting in a decrease in growth factor-stimulated kinase activity.  相似文献   

12.
In order to elucidate the mechanism of interaction between human epidermal growth factor (EGF) and its receptor, selected variants of EGF, differing by single amino acid substitutions, have been made by site-directed mutagenesis. The receptor affinity of these mutants was determined by a receptor binding competition assay, and the effects of the substitution on the structure of the protein were assessed by 1H nuclear magnetic resonance techniques. Various substitutions of Arg-41 resulted in substantial reduction in receptor affinity of EGF whereas change of Tyr-13 did not affect binding to the receptor. The 1H resonances of all nonexchangeable protons of the Tyr-13----Leu, Arg-41----His, and Leu-47----Glu variants were assigned and compared in order to assess the structural integrity of these mutants, which possess very different spectral and biological properties. In the case of the Leu-47----Glu mutant, only minor localized spectral changes were observed, confirming that the tertiary structure of the protein is preserved upon mutation. In contrast, for both the Arg-41----His and Tyr-13----Leu variants, significant and strikingly similar spectra changes were observed for many residues located far away from the mutated residues. This implies that similar structural alterations have taken place in both proteins, an idea further supported by hydrogen-exchange experiments where the exchange rates of hydrogen-bonded amide protons for both the Tyr-13----Leu and the Arg-41----His mutants were found to be about 4 times faster than in the wild-type protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel.  相似文献   

14.
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.  相似文献   

15.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

16.
Using site-directed mutagenesis, the ras-related and essential yeast YPT1 gene was changed to generate proteins with amino acid exchanges within conserved regions. Bacterially produced wild-type proteins were used for biochemical studies in vitro and were found to have properties very similar to mammalian ras proteins. Gene replacement allowed the study of physiological consequences of the mutations in yeast cells. Lys21----Met and Asn121----Ile substitutions rendered the protein incapable of binding GTP and caused lethality. Ser17----Gly and Ala65----Thr substitutions slightly changed the protein's apparent binding capacity for either GDP or GTP and altered its intrinsic GTPase activity. These mutations were without effect on cellular growth. The YPTgly17,thr65 mutant protein displayed a significantly altered relative capacity for guanine nucleotide binding but a GTPase activity comparable to the wild-type protein. In contrast to the Ala65----Thr substitution, the double mutant displayed a significantly reduced capacity for autophosphorylation and allowed cells to grow only poorly. Cellular growth was improved when this mutant protein was overproduced.  相似文献   

17.
Al-Sabah S  Donnelly D 《FEBS letters》2003,553(3):342-346
Lysine-288 in the glucagon-like peptide-1 receptor was predicted to be ideally positioned to play a role in hormone binding. Subsequent mutation of Lys-288 to Ala or Leu greatly reduced hormone affinity, while substitution with Arg had minimal effect. Compared to wild type, the Lys288-Ala receptor had a reduced affinity for three peptide ligands with complete N-terminal sequences but not for their N-truncated analogues. Hence, the role of this positively charged residue, which is conserved at the equivalent position in all other Family B receptors, was determined to be important for receptor interaction with the N-terminal eight residues of peptide agonists.  相似文献   

18.
AnEscherichia coliexpression system that exploits the bacterial alkaline phosphatase (PhoA) signal sequence to translocate recombinant human epidermal growth factor (hEGF) to the periplasm was used to evaluate how changes in the composition and sequence of amino acids near the PhoA–hEGF junction influence the periplasmic accumulation of recombinant protein. A series of chimeric structural genes was generated byin vitroreplacement of hEGF sequence with analogous segments from the EGF-like domain of human heregulin (HRG), significantly altering the electrostatic character of the amino-terminal region of the mature protein. Quantitation of HRG/EGF protein inE. coliperiplasmic extracts, by RP-HPLC, showed a fourfold decrease after one of two acidic residues located in the amino-terminal region of the mature hEGF, near the PhoA junction, was replaced. An additional threefold decrease was observed when the second acidic residue was replaced with a positively charged lysine. Further extension of the amino-terminal HRG sequence, beyond the first six residues, resulted in net neutralization of a more distant EGF acidic residue with no additional effect on protein yield. The importance of having a negatively charged group in the amino-terminal region of the mature protein was confirmed when insertion of an aspartic acid near the amino-terminus of two poorly expressed hybrid protein sequences resulted in a five- to eightfold increase in their recovery from the periplasm. This study demonstrates the importance of having negatively charged residues near the fusion junction of recombinant proteins expressed inE. coliusing the PhoA signal sequence for protein export.  相似文献   

19.
We have investigated the role of Tyr-203, His-270, and Lys-249 amino acid residues from the 8-oxoguanine glycosylase (hOGG1) active site in the process of recognition of 7,8-dihydro-8-oxoguanine (oxoG) damaged nucleotide and in the catalytic stages of enzymatic reaction. The pre-steady state kinetic analysis of conformational transitions of mutant forms of the enzyme and model DNA substrates during the enzymatic process revealed that the studied amino acid residues are involved in the specific binding of DNA substrates. The Tyr-203 is responsible for recognition of the damaged nucleotide; interaction between His-270 and DNA is necessary for the formation of the catalytically active complex with the oxoG-containing DNA. The Lys-249 acts not only as one of the catalytically important amino acids of the active site of the enzyme, but also plays a significant role in the formation of specific enzyme–substrate complex. The present study significantly complements the molecular-kinetic model of the enzymatic reaction and helps to clarify the origin of the high specificity of hOGG1 to oxidized bases in DNA.  相似文献   

20.
Grayanotoxin (GTX) exerts selective effects on voltage-dependent sodium channels by eliminating fast sodium inactivation and causing a hyperpolarizing shift in voltage dependence of channel activation. In this study, we adopted a newly developed protocol that provides independent estimates of the binding and unbinding rate constants of GTX (k(on) and k(off)) to GTX sites on the sodium channel protein, important in the molecular analysis of channel modification. Novel GTX sites were determined in D2S6 (Asn-784) and D3S6 (Ser-1276) by means of site-directed mutagenesis; the results suggested that the GTX receptor consists of the S6 transmembrane segments of four homologous domains facing the ion-conducting pore. We systematically introduced at two sites in D4S6 (Na(v)1.4-Phe-1579 and Na(v)1.4-Tyr-1586) amino acid substituents with residues containing hydrophobic, aromatic, charged, or polar groups. Generally, substitutions at Phe-1579 increased both k(on) and k(off), resulting in no prominent change in dissociation constant (K(d)). It seems that the smaller the molecular size of the residue at Na(v)1.4-Phe-1579, the larger the rates of k(on) and k(off), indicating that this site acts as a gate regulating access of toxin molecules to a receptor site. Substitutions at Tyr-1586 selectively increased k(off) but had virtually no effect on k(on), thus causing a drastic increase in K(d). At position Tyr-1586, a hydrophobic or aromatic amino acid side chain was required to maintain normal sensitivity to GTX. These results suggest that the residue at position Tyr-1586 has a more critical role in mediating GTX binding than the one at position Phe-1579. Here, we propose that the affinity of GTX to Na(v)1.4 sodium channels might be regulated by two residues (Phe and Tyr) at positions Phe-1579 and Tyr-1586, which, respectively, control access and binding of GTX to its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号