首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major depressive disorder (MDD) affects approximately 15 million Americans. Approximately 2 million of these are classified as being refractory to treatment (TR‐MDD). Because of the lack of available therapies for TR‐MDD, and the high risk of suicide, there is interest in identifying new treatment modalities and diagnostic methods. Understanding of the impact of genomic copy number variation in the etiology of a variety of neuropsychiatric phenotypes is increasing. Low copy repeat elements at 15q13.3 facilitate non‐allelic homologous recombination, resulting in recurrent copy number variants (CNVs). Numerous reports have described association between microdeletions in this region and a variety of neuropsychiatric phenotypes, with CHRNA7 implicated as a candidate gene. However, the pathogenicity of 15q13.3 duplications is less clear. As part of an ongoing study, in which we have identified a number of metabolomic anomalies in spinal fluid from TR‐MDD patients, we also evaluated genomic copy number variation in patients (n = 125) and controls (n = 26) via array‐based copy number genomic hybridization (CGH); the case frequency was compared with frequencies reported in a prior study as well as a larger population‐sized cohort. We identified five TR‐MDD patients with microduplications involving CHRNA7. CHRNA7 duplications are the most common CNVs identified by clinical CGH in this cohort. Therefore, this study provides insight into the potential involvement of CHRNA7 duplications in the etiology of TR‐MDD and informs those involved with care of affected individuals.  相似文献   

2.
Duplications of proximal 15q have been found in individuals with autistic disorder (AD) and varying degrees of mental retardation. Often these abnormalities take the form of a supernumerary inverted duplicated chromosome 15, more properly described as an isodicentric chromosome 15, or idic(15). However, intrachromosomal duplications also have been reported. In a few cases, unaffected mothers, as well as their affected children, carry the same duplications. During the course of the genotyping of trios of affected probands with AD and their parents, at the positional candidate locus D15S122, an intrachromosomal duplication of proximal 15q was detected by microsatellite analysis in a phenotypically normal mother. Microsatellite and methylation analyses of the pedigree in the following report show that, among three children, the two with autism or atypical autism have maternal inheritance of a 15q11-q13 duplication whereas the third child, who is unaffected, did not inherit this duplication. Their mother's 15q11-q13 duplication arose de novo from her father's chromosomes 15. This finding documents, for the first time, the significance of parental origin for duplications of 15q11-q13. In this family, paternal inheritance leads to a normal phenotype, and maternal inheritance leads to autism or atypical autism.  相似文献   

3.
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.  相似文献   

4.
Genomic disorders are human diseases caused by meiotic chromosomal rearrangements of unstable regions flanked by Low Copy Repeats (LCRs). LCRs act as substrates for Non-Allelic Homologous Recombination (NAHR) leading to deletions and duplications. The aim of this study was to assess the basal frequency of deletions and duplications of the 7q11.23, 15q11-q13 and 22q11.2 regions in spermatozoa from control donors to check differences in the susceptibility to generate anomalies and to assess the contribution of intra- and inter-chromatid NAHR events. Semen samples from ten control donors were processed by FISH. A customized combination of probes was used to discriminate among normal, deleted and duplicated sperm genotypes. A minimum of 10,000 sperm were assessed per sample and region. There were no differences in the mean frequency of deletions and duplications (del + dup) among the 7q11.23, 15q11-q13 and 22q11.2 regions (frequency ± SEM, 0.37 ± 0.02; 0.46 ± 0.07 and 0.27 ± 0.07%, respectively) (P = 0.122). Nevertheless, hierarchical cluster analysis reveals interindividual differences suggesting that particular haplotypes could be the main source of variability in NAHR rates. The mean frequency of deletions was not different from the mean frequency of duplications in the 7q11.23 (P = 0.202) and 15q11-q13 (P = 0.609) regions, indicating a predominant inter-chromatid NAHR. By contrast, in the 22q11.2 region the frequency of deletions slightly exceed duplications (P = 0.032), although at the individual level any donor showed differences. Altogether, our results support the inter-chromatid NAHR as the predominant mechanism involved in the generation of sperm deletions and duplications.  相似文献   

5.

Background  

Chromosome 15 contains many segmental duplications, including some at 15q11-q13 that appear to be responsible for the deletions that cause Prader-Willi and Angelman syndromes and for other genomic disorders. The current version of the human genome sequence is incomplete, with seven gaps in the proximal region of 15q, some of which are flanked by duplicated sequence. We have investigated this region by conducting a detailed examination of the sequenced genomic clones in the public database, focusing on clones from the RP11 library that originates from one individual.  相似文献   

6.
The human genome contains a variant form of the α7-nicotinic acetylcholine receptor (α7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5′-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation.  相似文献   

7.
8.
Maternally derived duplication of the imprinted region of chromosome 15q11-q14 leads to a complex neurobehavioral phenotype that often includes autism, cognitive deficits, and seizures. Multiple repeat elements within the region mediate a variety of rearrangements, including interstitial duplications, interstitial triplications, and supernumerary isodicentric marker chromosomes, as well as the deletions that cause Prader-Willi and Angelman syndromes. To elucidate the molecular structure of these duplication chromosomes, we designed a high-resolution array comparative genomic hybridization (array CGH) platform. The array contains 79 clones that form a gapped contig across the critical region on chromosome 15q11-q14 and 21 control clones from other autosomes and the sex chromosomes. We used this array to examine a set of 48 samples from patients with segmental aneuploidy of chromosome 15q. Using the array, we were able to determine accurately the dosage, which ranged from 1 to 6 copies, and also to detect atypical and asymmetric rearrangements. In addition, the increased resolution of the array allowed us to position two previously reported breakpoints within the contig. These results indicate that array CGH is a powerful technique to study rearrangements of proximal chromosome 15q.  相似文献   

9.
A large number of significant QTL for economically important traits including average daily gain have been located on SSC1q, which, as shown by chromosome painting, corresponds to four human chromosomes (HSA9, 14, 15 and 18). To provide a comprehensive comparative map for efficient selection of candidate genes, 81 and 34 genes localized on HSA9 and HSA14 respectively were mapped to SSC1q using a porcine 7000-rad radiation hybrid panel (IMpRH). This study, together with the cytogenetic map (http://www2.toulouse.inra.fr/lgc/pig/cyto/genmar/htm/1GM.HTM), demonstrates that SSC1q2.1-q2.13 corresponds to the region ranging from 44.6 to 63.2 Mb on HSA14q21.1-q23.1, the region from 86.5 to 86.8 Mb on HSA15q24-q25, the region from 0.9 to 27.2 Mb on HSA9p24.3-p21, the region from 35.1 to 38.0 Mb on HSA9p13, the region from 70.3 to 79.3 Mb on HSA9q13-q21 and the region from 96.4 to 140.0 Mb on HSA9q22.3-q34. The conserved synteny between HSA9 and SSC1q is interrupted by at least six sites, and the synteny between HSA14 and SSC1q is interrupted by at least one site.  相似文献   

10.
The putative locus for hereditary mixed polyposis syndrome (HMPS) in a large family of Ashkenazi descent (SM96) was previously reported to map to chromosome sub-bands 6q16-q21. However, new clinical data, together with molecular data from additional family members, have shown 6q linkage to be incorrect. A high-density genomewide screen for the HMPS gene was therefore performed on SM96, using stringent criteria for assignment of affection status to minimize phenocopy rates. Significant evidence of linkage was found only on a region on chromosome 15q13-q14. Since this region encompassed CRAC1, a locus involved in inherited susceptibility to colorectal adenomas and carcinomas in another Ashkenazi family (SM1311), we determined whether HMPS and CRAC1 might be the same. We found that affected individuals from both families shared a haplotype between D15S1031 and D15S118; the haplotype was rare in the general Ashkenazi population. A third informative family, SM2952, showed linkage of disease to HMPS/CRAC1 and shared the putative ancestral haplotype, as did a further two families, SMU and RF. Although there are probably multiple causes of the multiple colorectal adenoma and cancer phenotype in Ashkenazim, an important one is the HMPS/CRAC1 locus on 15q13-q14.  相似文献   

11.
We report on a patient presenting with mental retardation and obesity and a proximal duplication of chromosome 15. The patient shared some clinical signs with Prader-Willi syndrome. With a region-specific paint, generated by microdissection, a duplication in region 15q11.2-q13 was shown to be present. Subsequently, FISH with probes localized to chromosome region 15q11.2-q12 and microsatellite analysis was used to characterize this chromosome aberration further and an insertion duplication within the region frequently deleted in Prader-Willi and Angelman syndrome was demonstrated.  相似文献   

12.
The human 13q32-q33 region has been linked to both bipolar disorder and schizophrenia. Before completion of the draft sequences, we developed an approximately 15-Mb comprehensive map for the region extending from D13S1300 to ATA35H12. This map was assembled using publicly available mapping data and sequence-tagged site (STS)-based PCR confirmation. We then compared this map with the NCBI, Celera Genomics, and UCSC Golden Path data in February, June, and September 2001. All data sets showed gaps, misassignment of STSs, and errors in orientation and marker order. Surprisingly, the completed sequences of many bacterial artificial chromosomes (BACs) had been truncated. Of 21 gaps that were detected, 4 were present in both the NCBI and Celera databases. All gaps could be filled using 1-2 BAC clones. A total of 39 loci mapped to additional sites within the human genome, providing evidence of segmental duplications. Additionally, 61 unique cDNA clones were sequenced to increase available transcribed sequence, and 11,353 reference single-nucleotide polymorphisms (SNPs) with an average density of 1 SNP/3720 bases were identified. Overall, integration of the data from multiple sources is still needed for complete assembly of the 13q32-q33 region. (c)  相似文献   

13.
14.
We have applied a targeted physical mapping approach, based on the isolation of bovine region-specific large-insert clones using homologous human sequences and chromosome microdissection, to enhance the physical gene map of the telomeric region of BTA18 and to prove its evolutionary conservation. The latter is a prerequisite to exploit the dense human gene map for future positional cloning approaches. Partial sequencing and homology search were used to characterize 20 BACs targeted to the BTA18q2.4-q2.6 region. We used fluorescence in situ hybridization (FISH) to create physical maps of 11 BACs containing 15 gene loci; these BACs served as anchor loci. Using these approaches, 12 new gene loci (CKM, STK13, PSCD2, IRF3, VASP, ACTN4, ITPKC, CYP2B6, FOSB, DMPK, MIA, SIX5) were assigned on BTA18 in the bovine cytogenetic map. A resolved physical map of BTA18q2.4-q2.6 was developed, which encompasses 28 marker loci and a comparative cytogenetic map that contains 15 genes. The mapping results demonstrate the high evolutionary conservation between the telomeric region of BTA18q and HSA19q.  相似文献   

15.
We report on an 18-month-old boy conceived by assisted reproduction technology with developmental delay, hypotonia, microcephaly, frontal bossing, a mild convergent squint, malformed ears, and a short neck. Karyotype analysis revealed a de novo 7q21.1q22.3 duplication characterized by array comparative genomic hybridization (array-CGH) as a segment of 18.69 Mb. Duplications of the long arm of chromosome 7 are uncommon. There are 18 reported cases of different 7q segments with a pure duplication with no additional deletion of other chromosomes. As a consequence, duplications of chromosome 7q have been classified in 4 groups on the basis of the involved region. The present case is included in group 3 which involves interstitial duplications of different sizes. In the literature, only one case with an apparently smaller duplication of the same region has been described. Despite this, the phenotype is different. Moreover, the 2 patients share some phenotypic features, such as psychomotor delay, hypotonia, frontal bossing, short neck, and strabismus. However, the absence of physical characterization in most of the reported cases could justify the lacking phenotype-genotype correlation in patients with partial 7q duplication. Further studies using recent molecular approaches such as array-CGH might permit a more clinically useful grouping of 7q duplications.  相似文献   

16.
The α7 nicotinic acetylcholine receptor gene (CHRNA7) is linked to schizophrenia. A partial duplication of CHRNA7 (CHRFAM7A) is found in humans on 15q13–14. Exon 6 of CHRFAM7A harbors a 2-bp deletion polymorphism, CHRFAM7AΔ2bp, which is also associated with schizophrenia. To understand the effects of the duplicated subunits on α7 receptors, we fused α7, dupα7, and dupΔα7 subunits with various fluorescent proteins. The duplicated subunits co-localized with full-length α7 subunits in mouse neuroblastoma cells (Neuro2a) as well as rat hippocampal neurons. We investigated the interaction between the duplicated subunits and full-length α7 by measuring Förster resonance energy transfer using donor recovery after photobleaching and fluorescence lifetime imaging microscopy. The results revealed that the duplicated proteins co-assemble with α7. In electrophysiological studies, Leu at the 9′-position in the M2 membrane-spanning segment was replaced with Cys in dupα7 or dupΔα7, and constructs were co-transfected with full-length α7 in Neuro2a cells. Exposure to ethylammonium methanethiosulfonate inhibited acetylcholine-induced currents, showing that the assembled functional nicotinic acetylcholine receptors (nAChRs) included the duplicated subunit. Incorporation of dupα7 and dupΔα7 subunits modestly changes the sensitivity of receptors to choline and varenicline. Thus, the duplicated proteins are assembled and transported to the cell membrane together with full-length α7 subunits and alter the function of the nAChRs. The characterization of dupα7 and dupΔα7 as well as their influence on α7 nAChRs may help explain the pathophysiology of schizophrenia and may suggest therapeutic strategies.  相似文献   

17.
Patterns of segmental duplication in the human genome   总被引:12,自引:0,他引:12  
We analyzed the completed human genome for recent segmental duplications (size > or = 1 kb and sequence similarity > or = 90%). We found that approximately 4% of the genome is covered by duplications and that the extent of segmental duplication varies from 1% to 14% among the 24 chromosomes. Intrachromosomal duplication is more frequent than interchromosomal duplication in 15 chromosomes. The duplication frequencies in pericentromeric and subtelomeric regions are greater than the genome average by approximately threefold and fourfold. We examined factors that may affect the frequency of duplication in a region. Within individual chromosomes, the duplication frequency shows little correlation with local gene density, repeat density, recombination rate, and GC content, except chromosomes 7 and Y. For the entire genome, the duplication frequency is correlated with each of the above factors. Based on known genes and Ensembl genes, the proportion of duplications containing complete genes is 3.4% and 10.7%, respectively. The proportion of duplications containing genes is higher in intrachromosomal than in interchromosomal duplications, and duplications containing genes have a higher sequence similarity and tend to be longer than duplications containing no genes. Our simulation suggests that many duplications containing genes have been selectively maintained in the genome.  相似文献   

18.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

19.
In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号