首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 280 Escherichia coli isolates were isolated from a bovine feedlot at the University of Connecticut campus via enrichment in lauryl tryptose broth and random selection from MacConkey plates. The E. coli subspecies diversity was estimated by employing whole-cell BOX-PCR genomic fingerprints. A total of 89 distinct operational taxonomic units (OTUs) were identified by employing a criterion of 85% fingerprint similarity as a surrogate for an OTU, while the Chao1 index estimated the E. coli population richness at 128 OTUs. One genotype (at a similarity level of 60%) dominated the population at 66% regardless of sampling depth or location, while no significant vertical distribution pattern was observed in terms of genotype, mobility, antibiotic resistance profile, or biofilm-forming ability. Motility, measured by a soft agar assay, had a very broad range among the E. coli population and was positively correlated with biofilm-forming ability in minimal medium (Spearman's rank correlation coefficient r = 0.619, P < 10(-4)) but not in Luria broth. Only an estimated 48% of the population possessed gene agn43, which encodes Ag43, a phase-variable outer membrane protein that has been implicated in biofilm formation in minimal medium. We observed significantly more biofilm formation in both minimal medium and Luria broth for agn43(+) strains, with a larger effect in minimal medium. This study represents an exhaustive inventory of extant E. coli population diversity at a bovine feedlot and reveals significant subspecies heterogeneity in interfacial behavior.  相似文献   

2.
3.
4.
Biofilm formation and host-pathogen interactions are frequently studied using multiwell plates; however, these closed systems lack shear force, which is present at several sites in the host, such as the intestinal and urinary tracts. Recently, microfluidic systems that incorporate shear force and very small volumes have been developed to provide cell biology models that resemble in vivo conditions. Therefore, the objective of this study was to determine if the BioFlux 200 microfluidic system could be used to study host-pathogen interactions and biofilm formation by pathogenic Escherichia coli. Strains of various pathotypes were selected to establish the growth conditions for the formation of biofilms in the BioFlux 200 system on abiotic (glass) or biotic (eukaryotic-cell) surfaces. Biofilm formation on glass was observed for the majority of strains when they were grown in M9 medium at 30°C but not in RPMI medium at 37°C. In contrast, HRT-18 cell monolayers enhanced binding and, in most cases, biofilm formation by pathogenic E. coli in RPMI medium at 37°C. As a proof of principle, the biofilm-forming ability of a diffusely adherent E. coli mutant strain lacking AIDA-I, a known mediator of attachment, was assessed in our models. In contrast to the parental strain, which formed a strong biofilm, the mutant formed a thin biofilm on glass or isolated clusters on HRT-18 monolayers. In conclusion, we describe a microfluidic method for high-throughput screening that could be used to identify novel factors involved in E. coli biofilm formation and host-pathogen interactions under shear force.  相似文献   

5.
Bacterial biofilms have recently gained considerable interest in the food production and medical industries due to their ability to resist destruction by disinfectants and other antimicrobials. Biofilms are extracellular polymer matrices that may enhance the survival of pathogens even when exposed to environmental stress. The effect of incubation temperatures (25°C, 37°C, and 40°C) and Salmonella serotype on biofilm-forming potentials was evaluated. Previously typed Salmonella serotypes (55) isolated from the gut of chickens were accessed for biofilms formation using a standard assay. Salmonella Typhimurium ATCC 14028TM and Salmonella Enteritidis ATCC 13076TM (positive controls), Escherichia coli (internal control) and un-inoculated Luria Bertani (LB) broth (negative control) were used. The isolates formed no biofilm (11.86–13.56%), weak (11.86–45.76%), moderate (18.64–20.34%), strong biofilms (23.73–54.24%) across the various temperatures investigated. Serotypes, Salmonella Heidelberg and Salmonella Weltevreden were the strongest biofilm formers at temperatures (25°C, 37°C, and 40°C, respectively). The potential of a large proportion (80%) of Salmonella serotypes to form biofilms increased with increasing incubation temperatures but decreased at 40°C. Findings indicate that average temperature favours biofilm formation by Salmonella serotypes. However, the influence of incubation temperature on biofilm formation was greater when compared to serotype. A positive correlation exists between Salmonella biofilm formed at 25°C, 37°C and 40°C (p ≥ 0.01). The ability of Salmonella species to form biofilms at 25°C and 37°C suggests that these serotypes may present severe challenges to food-processing and hospital facilities.Key words: Salmonella, biofilm, biofilm production potential, crystal violet microtitre  相似文献   

6.
7.
H-NS is a major constituent of the Escherichia coli nucleoid, whereas ςS is a stress-induced sigma factor. An hns null mutation affects the cellular content of ςS in such a way that a remarkable accumulation of ςS is observed in the logarithmic growth phase, which results in enhanced expression of a number of ςS-dependent genes, including the katE gene. We isolated an extragenic mutation that affects the expression of the katE-lacZ fusion gene in the Δhns background. The relevant gene was identified as yhhP, which encodes a small polypeptide of 81 amino acids. Lesion of this gene seemed to affect the stability of ςS. A deletion analysis of yhhP revealed that this small protein plays a fundamental role in the general physiology of E. coli. The yhhP-deficient cell is not capable of growing in standard laboratory rich medium (i.e., Luria broth), resulting in the formation of filamentous cells. Homologs of this intriguing protein occur in a wide variety of bacterial species, including archaeal species.  相似文献   

8.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

9.
N-Ethylglutamate (NEG) was detected in Escherichia coli BL21 cells grown on LB broth, and it was found to occur at a concentration of ∼4 mM in these cells under these conditions. The same cells grown on M9 glucose medium contained no detectable amount of NEG. Analysis of the LB broth showed the presence of NEG, a compound never before reported as a natural product. Isotope dilution analysis showed that it occurred at a concentration of 160 μM in LB broth. Analyses of yeast extract and tryptone, the organic components of LB broth, both showed the presence NEG. It was demonstrated that NEG can be generated during the autolysis of the yeast used in the preparation of the yeast extract. Growth of these E. coli cells in LB broth prepared in deuterated water showed no incorporation of deuterium into NEG, demonstrating that E. coli cells did not generate the NEG. Cell growth rates were not affected by the addition of 5 mM NEG to either LB or M9 glucose medium. l-[ethyl-2H4]NEG was found to be readily incorporated into the cells and metabolized by the cells. From these results, it was concluded that all of the NEG present in the cells was taken up from the medium. NEG could serve as the sole nitrogen source for E. coli when grown on M9 glucose medium in the presence of glucose but could not serve as the sole carbon source on M9 medium in the absence of glucose.During work on developing methods for the analysis of the amino acids generated by recombinant archaeal mutases, I developed procedures for the recovery and analysis of the free amino acids present in cell extracts of Escherichia coli. When these methods were applied to analysis of E. coli grown on LB broth, I always found a large amount of an unknown amino acid. Here I report on the identification of this amino acid as N-ethylglutamate (NEG). NEG has never been reported as a natural product. I demonstrate that NEG is readily taken up by E. coli and can serve as the sole source of nitrogen when the cells are grown on M9 glucose medium.  相似文献   

10.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

11.
Classical laboratory strains of Escherichia coli do not spontaneously colonize inert surfaces. However, when maintained in continuous culture for evolution studies or industrial processes, these strains usually generate adherent mutants which form a thick biofilm, visible with the naked eye, on the wall of the culture apparatus. Such a mutant was isolated to identify the genes and morphological structures involved in biofilm formation in the very well characterized E. coli K-12 context. This mutant acquired the ability to colonize hydrophilic (glass) and hydrophobic (polystyrene) surfaces and to form aggregation clumps. A single point mutation, resulting in the replacement of a leucine by an arginine residue at position 43 in the regulatory protein OmpR, was responsible for this phenotype. Observations by electron microscopy revealed the presence at the surfaces of the mutant bacteria of fibrillar structures looking like the particular fimbriae described by the Olsén group and designated curli (A. Olsén, A. Jonsson, and S. Normark, Nature 338:652–655, 1989). The production of curli (visualized by Congo red binding) and the expression of the csgA gene encoding curlin synthesis (monitored by coupling a reporter gene to its promoter) were significantly increased in the presence of the ompR allele described in this work. Transduction of knockout mutations in either csgA or ompR caused the loss of the adherence properties of several biofilm-forming E. coli strains, including all those which were isolated in this work from the wall of a continuous culture apparatus and two clinical strains isolated from patients with catheter-related infections. These results indicate that curli are morphological structures of major importance for inert surface colonization and biofilm formation and demonstrate that their synthesis is under the control of the EnvZ-OmpR two-component regulatory system.  相似文献   

12.
The productivity of confirmatory EC broth for the isolation of fecal Escherichia coli was determined at 44.5 and 45.5 C. A variety of frozen pre-cooked foods and an assortment of nutmeats were examined after primary incubation in Lauryl Sulfate Tryptose (LST) broth. In 85.3% of the cases, the parallel tubes of EC broth incubated for 24 hr at 44.5 and 45.5 C gave rise to identical E. coli responses of positive, false positive, and negative. The remaining 14.7% of the reactions represent the qualitative difference between the two temperatures. The EC test at 45.5 C was more specific for E. coli, since two- to threefold fewer false positives were produced at this temperature than at 44.5 C. However, fecal E. coli recoveries were slightly higher (4%) at the lower temperature. Incubating the EC tubes from the interval of 24 to 48 hr gave rise to an additional 4.3% of E. coli recovery, but this was accompanied by an excessive production of false positives (75.9%), representing a 3.5-fold decrease in specificity. It is recommended that, in the confirmatory use of EC broth in the examination of frozen foods and nutmeats for the recovery of fecal E. coli, the test be made at 45.5 C in a water bath and limited to 24 hr of incubation only, to insure optimal specificity. During the study, a “fixed” productivity ratio was noted; E. coli+/LST+ equaled approximately one-fourth or 25%. The significance of this ratio is discussed.  相似文献   

13.
Escherichia coli strain WWU was found to be moderately resistant to streptomycin when grown in a minimal medium, although the strain was sensitive if grown in nutrient broth. Transfer experiments showed that cells grown in minimal medium retain the resistant state for a period of time after dilution into nutrient broth; and conversely, sensitive cells grown in nutrient broth were sensitive after dilution into minimal medium for a period of time. The kinetics of transition from resistant to sensitive and from sensitive to resistant were observed, and kinetics of 3H-dihydrostreptomycin accumulation by resistant and sensitive cells were compared. The data suggested that cells grown in minimal medium were physiologically resistant because they accumulated streptomycin poorly. Inactivation per incorporated antibiotic molecule was the same in resistant and sensitive cells.  相似文献   

14.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

15.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

16.
Flow cytometry (FCM) in conjunction with immunocytochemical-labeling was used to analyze and screen a population of Escherichia coli clones containing a genomic library from the oil-degrading microorganism Acinetobacter calcoaceticus RAG-1 for the isolation of clones which expressed specific RAG-1 surface antigens. Reconstruction experiments using mixed populations indicated that RAG-1 cells could be clearly distinguished at a ratio of one RAG-1 cell to 500 Escherichia coli cells. Using this technique two clones, WM143 and WM191, were isolated and shown by restriction endonuclease cleavage and Southern hybridization to contain plasmids carrying inserts of RAG-1 DNA of 9.4 and 9.8 kb respectively.Non-common abbreviations FCM flow cytometry - FITC fluorescein-iso-thiocyanate - LB Luria broth - MM minimal salt medium - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride  相似文献   

17.
Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.  相似文献   

18.
In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In previous work, we have shown that Escherichia coli cells grown in media containing a critical phosphate concentration >37 mM maintained an unusual high polyP level in stationary phase. The aim of the present work was to analyze if fluctuations in polyP levels in stationary phase affect biofilm formation capacity in E. coli. Polymer levels were modulated by the media phosphate concentration or using mutant strains in polyP metabolism. Cells grown in media containing phosphate concentrations higher than 25 mM were defective in biofilm formation. Besides, there was a disassembly of 24 h preformed biofilm by the addition of high phosphate concentration to the medium. These phenotypes were related to the maintenance or re-synthesis of polyP in stationary phase in static conditions. No biofilm formation was observed in ppkppx or ppkppx/ppk+ strains, deficient in polyP synthesis and hydrolysis, respectively. luxS and lsrK mutants, impaired in autoinducer-2 quorum sensing signal metabolism, were unable to form biofilm unless conditioned media from stationary phase wild type cells grown in low phosphate were used. We conclude that polyP degradation is required for biofilm formation in sufficient phosphate media, activating or triggering the production of autoinducer-2. According to our results, phosphate concentration of the culture media should be carefully considered in bacterial adhesion and virulence studies.  相似文献   

19.
The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination.  相似文献   

20.
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号