首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on myelinating rat brain indicated that microsomes, Golgi-enriched and cytosol fractions may process galactolipids destined for myelin. To extend these findings we labeled brain galactolipids in vivo and determined the specific radioactivity of cerebrosides and sulfatides in several subcellular fractions. 17-day-old rats were treated by intracranial injection with [14C]galactose 60 min prior to and [3H]galactose 15 min prior to killing. Subcellular fractions were prepared from brain stem, and concentrations of cerebrosides and sulfatides were determined, their radioactivity measured and the 3H/14C ratio compared. Our results showed that the heavier Golgi-enriched fraction (designated Fraction 2) is unique in its low galactolipid content and high specific radioactivities of cerebrosides and sulfatides. The low ratio of the specific activity of cerebroside to that of sulfatide in Fraction 2 compared to other fractions indicates that it may be the site of most rapid conversion of newly synthesized cerebrosides to sulfatides. The specific radioactivities of cerebrosides and sulfatides in cytosol are intermediate between those in Golgi-enriched Fraction 2 and microsomes and those in myelin, consistent with the role postulated for cytoplasmic elements in the transport of cerebrosides and sulfatides to myelin.  相似文献   

2.
Cultured cells from chick embryo brains were studied for their sensitivity to triethyllead. Triethyllead chloride (3.16 M) was added to the nutrient medium and incubated for 48 hr with the cells. Morphological changes in light microscope and radioactive labeling of galactolipids were assayed. Triethyllead treatment reduced the number of neuronal cells with processes. Morphological changes were not observed in glial cells. The [35S]sulfate labeling of sulfatides was reduced to 50%. The [3H]serine labeling of cerebrosides with alpha-hydroxy fatty acids was not influenced, while the [3H]serine labeling of cerebrosides with nonhydroxy fatty acids was inhibited 40% in one- and two- but not in three-week-old cultures. The results indicate that the nerve cell response to triethyllead in cultures is selective, since the neurons are more sensitive than the glia cells and the labeling of sulfatides is more sensitive than that of cerebrosides.  相似文献   

3.
Abstract— The biosynthesis and accumulation of monogalactosyl diglyceride, galacto-cerebrosides and sulfatides were studied in the brain of quaking mouse during myelination. The specific activity of monogalactosyl diglyceride synthesis of the mutant mouse was reduced to 50% of the control of the same age, comparable to the reduction in the biosynthesis of galactosylcerebrosides and sulfatides. The three galactolipids were largely associated with the myelin and microsomal fractions in the normal and quaking mice at the ages studied. Although the concentrations of microsomal galactolipids (expressed as nmol/g wet wt of brain) were lower in quaking mice than in the controls at all ages, the percentage of total brain monogalactosyl diglyceride recovered in the microsomes of the mutant mouse was always larger than in the microsomes of the controls. Between 16 and 41 days, the monogalactosyl diglyceride content of the control myelin increased 10-fold, whereas the concentrations in the mutant increased only 2-fold. In normal animals, the percentage of total myelin galactolipids in the 'small myelin' decreased over the age of 1841 days with concomitant increase in the 'large myelin'. In contrast, in the mutant, large percentages of these compounds remained associated with the small myelin even at late periods of myelin development. These findings indicate that the slow rate of deposition of myelin in the brain of quaking mouse may be due to a defective transport mechanism of the galactolipids from the site of synthesis (microsomes) to the site of deposition (myelin), or to a defect in the mechanism of final myelin assembly, rather than to a lipid-specific genetic error.  相似文献   

4.
The concentrations of cerebrosides and sulfatides were measured in the nervous systems of urodeles and related orders with a high performance liquid chromatographic technique. The peripheral and central nervous systems of all three urodele species, Necturus maculosis (mud puppy, a salamander), Notophthalmus viridescens (eastern red spot newt), and Desmognathus ochropheus (mountain salamander), were found to be completely devoid of alpha-hydroxy fatty acid-containing cerebrosides and sulfatides. All species of reptiles and fish classes close to urodeles contain these galactolipids. The levels of nonhydroxy fatty acid-containing cerebrosides and sulfatides are essentially similar in both urodeles and reptiles. Myelin isolated from Necturus spinal cord had a specific density of 1.07, lighter than mammalian myelin. Except for the absence of hydroxycerebrosides and hydroxysulfatides, the lipid composition of Necturus spinal cord myelin is essentially similar to that of frog and rat myelin. The fatty acids of nonhydroxycerebrosides are rich in monounsaturated homologs of C22-C25, and the sphingoid base consists of both sphinganine and sphingosine. Electron microscopic examination of the sciatic nerve showed that the general structure and interlamellar distances of salamander and newt myelin are identical to those of frog, chameleon, and rat. Necturus myelin, therefore, can be used as a model for the study of the functional and structural role of hydroxygalactolipids.  相似文献   

5.
Brains and spinal cords of myelin-deficient (md) and littermate control rats were analyzed serially for myelin lipids during the period from 13 to 32 days of age. The glycolipids of md rat brains were severely reduced and remained so during the period of study; brain cholesterol and phospholipids increased moderately but never reached the values for control brains. Deficiency of all three lipid classes was marked in the spinal cord and did not change with age. Among the glycolipids of md rats, deficiency was more severe in cerebrosides than sulfatides. The pronounced reduction of cerebrosides in the early stages of myelination suggests that abnormal synthesis of these glycolipids may be the most important biochemical anomaly responsible for myelin deficiency.--Csiza, C.K. Lipid class analysis of the central nervous system of myelin-deficient Wistar rats.  相似文献   

6.
Sphingogalactolipids (galactocerebrosides and sulfatides) have been isolated in almost quantitative yields from normal human nervous tissue (mostly brain) at different ages and their fatty acid compositions have been determined by gas-liquid chromatography. The ratio of hydroxy acids to normal acids increased slightly during myelination and then remained rather constant; in adults the ratio for cerebrosides was about 2, and for sulfatides, 0.6-0.8. In adult nervous tissue the two predominant fatty acids of cerebrosides and sulfatides were the C(24) monounsaturated and 2-hydroxy saturated acids. The infant brain galactolipids had (compared with child and adult) a lower percentage of C(22)-C(26) fatty acids and a much lower percentage of monoenoic acids, both of normal and hydroxy acids. Low activities of fatty acid elongation and desaturation systems during myelination are inferred. Fatty acid changes with age were the same for cerebrosides and sulfatides but occurred later in the sulfatides, which supports the hypothesis that the cerebrosides are precursors of the sulfatides. The adult pattern of fatty acid composition with regard to degree of unsaturation and total percentage of C(22)-C(26) acids was reached as early as at 2 yr of age, but the percentage of odd-numbered (C(23) and C(25)) fatty acids continued to increase up to the age of 10-15 yr. The fatty acid composition of the galactolipids of peripheral nerves differed mainly in its lower percentages of C(25) and C(26) acids and higher percentages of C(22) and C(16) acids. This composition is thus intermediate between those of brain and of extraneural organs.  相似文献   

7.
The lipid composition of CNS and PNS myelin was studied in rat,Xenopus, trout andTorpedo. The main difference lay in the proportion of cerebrosides, which decreased in the sequence rat > Xenopus > Torpedo > trout. In additionTorpedo CNS and PNS myelins were extremely rich in sulfatides. In some respects,Torpedo appeared closer to tetrapods than trout. Otherwise the proportion of the different lipid classes did not reveal any clear evolutionary trends.The presence of hydroxylated galactolipids in CNS myelin was investigated in several additional species. Considerable amounts were found inTorpedo, Polypterus, Protopterus, lizard, and chicken, with the highest values in rat and anurans. Only very small amounts of hydroxylated cerebrosides were detected in trout and in axolotl, while newt had none. This parameter appears therefore of doubtful usefulness for phylogenetic studies. In contrast to myelin proteins, myelin lipids are of limited value for establishing phylogenetic relationship among vertebrates.Abbreviations CH cholesterol - CNS central nervous system - FA fatty acids - GC cerebrosides - HPTLC high-performance thin-layer chromatography - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PLP proteolipid protein - PNS peripheral nervous system - PS phosphatidylserine - SM sphingomyelin - SU sulfatides  相似文献   

8.
To determine the contribution of B cells to brain myelin injury in Semliki Forest Virus (SFV) encephalomyelitis, normal C57BL/6 (B6) and B-cell-deficient (C57BL/6-tm1Cgn) B6 mice were infected with SFV. The peak of clinical disease, i.e., the time at which the greatest proportions of mice had moderate to severe clinical signs, appeared earlier in B6 mice [day 7 postinfection (pi)] than in B-cell-deficient mice (day 21 pi). By flow cytometry, no clear differences were found in the percentages of CD3(+)CD4(+) T cells in the brains of B6 and B-cell-deficient mice. However, by day 21 pi, percentages of CD3(+)CD8(+) T cells were greater in brains of B-cell-deficient than in those of B6 mice. On day 21 pi, percentages of CD19(+) B cells were maximal in B6 mice, but B cells were absent in B-cell-deficient mice at all time points. Sera obtained from B6 mice showed antibody responses to SFV, to SFV E2 peptides p137-151 and p115-133, and to peptides of myelin oligodendrocyte glycoprotein p18-32 and myelin basic protein (MBP) p64-75. Sera obtained from B-cell-deficient mice showed minimal or no reactivity to SFV, E2, or myelin peptides. CNS inflammatory and PAS-positive macrophage foci were maximal on days 7-14 pi in all mice. Additionally, B6 mice had brain white matter vacuolation, whereas B-cell-deficient mice did not. These data suggest that brain infiltrating B cells and anti-myelin antibodies contribute to myelin injury in SFV encephalomyelitis.  相似文献   

9.
Galactolipid metabolism was investigated as a function of development in primary cultures initiated from 19-21-day-old dissociated fetal rat brain. Significant amounts of galactocerebrosides, sulfatides, and monogalactosylglycerides were synthesized and accumulated by 8 days in culture. Thereafter the synthetic rates and levels of these galactolipids increased rapidly, reaching maximal values approximately 22-29 days in culture. Galactolipids containing nonhydroxy or 2-hydroxy fatty acid were both synthesized at approximately equal rates. The initial rates of synthesis, investigated at 15, 29, and 50 days in culture, were three- to fivefold higher for galactocerebrosides than for sulfatides and two- to threefold higher than for monogalactosylglycerides. The total number of cells staining with antisera against galactocerebroside of sulfatide also increased very rapidly between 8 and 22 days in culture, reaching levels of 4-5 million cells per seeded fetal brain. The amount of galactocerebroside or sulfatide per cell stained with the corresponding antiserum increased severalfold from 10 to 27 days in culture and remained high until at least 36 days in culture (the latest time point examined). Thus, the temporal expression of galactolipid accumulation in the cell cultures was comparable to that occurring in rat brain, but some important quantitative reductions in the levels of accumulation per cell in culture were noted. In addition, in contrast to normal brain in which galactolipid synthetic rates are reduced after the period of most active myelination, in culture both synthesis and turnover of these galactolipids remained high, suggestive of a partial arrest in myelin maturation.  相似文献   

10.
Lipids and proteins in multiple sclerosis white matter   总被引:2,自引:1,他引:1  
Abstract— Quantitative analyses of white matter from four brains of patients with multiple sclerosis (MS) and four control brains were carried out for total and soluble proteins, individual lipid fractions, and their corresponding fatty acids. In three specimens from two of the MS brains there were reductions of cerebrosides and of the C20:1 acid in the ethanolamine glycerophosphatide (EGP) fraction and a slight increase of tetraenes and trienes, while all other components were present in concentrations similar to those in the controls. In three other samples from two of the MS brains, galactolipids were deficient to a greater extent than cholesterol, EGP or CGP (choline glycerophosphatide), while proteins were within the control range. In samples where thinning of myelin was observed in Luxol-blue stained sections, there were proportional decreases of all components. The percentage of C20:1 acid in the EGP fraction was reduced in two of three myelin preparations from corresponding samples of MS white matter, and that of C24:1 acid in the cerebroside fraction was reduced in all three MS myelin preparations when compared with the two controls. The data suggest that inadequacy of the fatty acid elongation process together with deficits of cerebrosides represent one of the early biochemical lesions in the white matter of the MS brain.  相似文献   

11.
The fatty acid composition of cerebrosides and sulfatides from frontal lobe gray and white matter was determined for five fresh and four formalinized adult brains and for eight infants. Fatty acid patterns were unaffected by formalinization, but varied considerably from one another in the proportion of saturated to unsaturated fatty acids. The percentages of 24:0 and 24:1 increased with age. Cerebrosides obtained from areas such as the brainstem and cerebellum, where myelination was more advanced, tended to have a larger proportion of long-chain fatty acids than samples extracted from frontal or parietal lobe white matter. Hydroxy fatty acids showed an adult pattern in all instances in which amounts sufficient for accurate quantification could be isolated. Lipid hexose, cerebroside + sulfatide hexose, and methanoleluted hexose were measured in the brains of 12 infants ranging in age from a 4 month fetus to 2 yr. In the most immature, the majority of lipid hexose was in the form of glycolipids more polar than cerebrosides and sulfatides. These have tentatively been identified as hematosides and globosides. With maturation, cerebrosides and sulfatides increased progressively, but the amounts of the more polar glycolipids remained constant in relation to the total lipid content of tissue.  相似文献   

12.
Myelin in the mammalian nervous system has a high concentration of galactolipids [galactosylceramide (GalCer) and sulfatide] with 2-hydroxy fatty acids. We recently reported that fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is the major fatty acid 2-hydroxylase in the mouse brain. In this report, we show that FA2H also plays a major role in the formation of 2-hydroxy galactolipids in the peripheral nervous system. FA2H mRNA and FA2H activity in the neonatal rat sciatic nerve increased rapidly during developmental myelination. The contents of 2-hydroxy fatty acids were approximately 5% of total galactolipid fatty acids at 4 days of age and increased to 60% in GalCer and to 35% in sulfatides at 60 days of age. The chain length of galactolipid fatty acids also increased significantly during myelination. FA2H expression in cultured rat Schwann cells was highly increased in response to dibutyryl cyclic AMP, which stimulates Schwann cell differentiation and upregulates myelin genes, such as UDP-galactose:ceramide galactosyltransferase and protein zero. These observations indicate that FA2H is a myelination-associated gene. FA2H-directed RNA interference (RNAi) by short-hairpin RNA expression resulted in a reduction of cellular 2-hydroxy fatty acids and 2-hydroxy GalCer in D6P2T Schwannoma cells, providing direct evidence that FA2H-dependent fatty acid 2-hydroxylation is required for the formation of 2-hydroxy galactolipids in peripheral nerve myelin. Interestingly, FA2H-directed RNAi enhanced the migration of D6P2T cells, suggesting that, in addition to their structural role in myelin, 2-hydroxy lipids may greatly influence the migratory properties of Schwann cells.  相似文献   

13.
COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:9,自引:3,他引:6  
Myelin was isolated from the brains of mice at ages of 14, 24, 41, 44, 47, and 182 days and the contents of lipid phosphorus, cholesterol, lipid galactose, alkenyl groups, ethanolamine phosphoglycerides, choline phosphoglycerides, sphingomyelin, and serine and inositol phosphoglycerides were determined. Significant differences in the composition relative to total lipid phosphorus were found in the myelin. At 14 days of age, the myelin had lower relative amounts of cholesterol, galactolipids, alkenyl groups, and ethanolamine phosphoglycerides and a higher relative amount of choline phosphoglycerides.  相似文献   

14.
Abstract— Phospholipids and sphingolipids from brains of normal and Jimpy mice were isolated in a pure form by thin-layer chromatographic procedures. The fatty acid composition of the major phospholipids, i.e. ethanolamine glycerophospholipids, serine glycerophospholipids, choline glycerophospholipids and inositol glycerophospholipids, as well as sphingomyelin, cerebrosides and sulphatides was determined by gas-liquid chromatography. A specific fatty acid pattern for each of the four glycerophospholipids was found. The fatty acid composition of inositol glycerophospholipid, which has not previously been studied in mouse brain, was characterized by a high concentration of arachidonic acid. After 16 days of age, fatty acid analysis showed definite differences between the phospholipids from normal and mutant brains. A small increase of polyunsaturated fatty acids in glycerophospholipids of ethanolamine, serine and choline from the Jimpy central nervous system was found, which has been explained by the myelin deficiency. Sphingomyelin, cerebrosides and sulphatide analyses showed a wide distribution of saturated and mono-unsaturated fatty acids in both normal and mutant mice. A reduction in the amount of long-chain fatty acids was demonstrated in mutant brain sphingolipids; in sulphatides and cerebrosides, the amount of non-hydroxy fatty acids was reduced to a greater extent than in sphingomyelin. The distribution of fatty acids in sphingolipids from the myelin and microsomal fractions was also investigated in both types of mice. Cerebrosides were characterized by a high content of long-chain fatty acids in myelin as well as in microsomes. Sulphatides and sphingomyelin, on the other hand, showed a higher content of medium-chain fatty acids in microsomes than in myelin. In the mutant brain, the amount of long-chain fatty acids was reduced in both subcellular fractions. The deviation from normal in the pattern of fatty acid distribution in Jimpy brain is discussed in relation to the current concepts of glycolipid biosynthesis.  相似文献   

15.
Brain slices from 18 day old normal and malnourished rats were incubated in the presence of [35S]sulfate to explore its incorporation into sulfatides of a total brain homogenate and the appearance of labeled sulfatides in different subcellular fractions. While the incorporation of label into sulfatides of the total homogenate was similar in both groups of animals, in subcellular fractions separated on a linear sucrose density gradient, labeling of sulfatides in malnourished animals was relatively higher in the region corresponding to the microsomal fraction. Time course incorporation and pulse-chase experiments were carried out to explore the kinetics of labeling of microsomal and myelin sulfatides. In pulse-chase experiments, normal controls showed a decrease in the specific radioactivity of sulfatides in the microsomal fraction after the chase, which was not observed in malnourished animals, while the appearance of labeled sulfatides in the myelin fraction of the latter group of animals was found to be lower than in normals. These results suggest that in neonatal malnutrition there is a defect in the transport of de novo synthesized sulfatides towards myelin or/and a problem in the assembly of these lipids into the myelin membrane.  相似文献   

16.
The synthesis and turnover of cerebrosides and phospholipids was followed in microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of [U-14C]serine. The kinetics of incorporation of radioactivity into microsomal and myelin cerebrosides indicate the possibility of a precursor-product relationship between cerebrosides of these membranes. The specific radioactivity of myelin cerebrosides was corrected for the deposition of newly formed cerebrosides in myelin. Multiphasic curves were obtained for the decline in specific radioactivity of myelin and microsomal cerebrosides, suggesting different cerebroside pools in these membranes. The half-life of the fast turning-over pool of cerebrosides of myelin was 7 and 22 days for the developing and adult rat brain respectively. The half-life of the slowly turning-over pool of myelin cerebrosides was about 145 days for both groups of animals. The half-life of the rapidly turning-over microsomal cerebrosides was calculated to be 20 and 40 h for the developing and adult animals respectively. The half-life of the intermediate and slowly turning-over microsomal cerebrosides was 11 and 60 days respectively, for both groups of animals. The amount of incorporation of radioactivity into microsomal cerebrosides from L-serine was greatly decreased in the adult animals, and greater amounts of the precursor were directed towards the synthesis of phosphatidylserine. In the developing animals, considerable amounts of cerebrosides were synthesized from L-serine, besides phosphatidylserine. The time-course of incorporation indicated that a precursor-product relationship exists between microsomal and myelin phosphatidylserine. The half-life of microsomal phosphatidylserine was calculated to be about 8 h for the fast turning-over pool in both groups of animals.  相似文献   

17.
Effects of Rumpshaker Mutation on CNS Myelin Composition and Structure   总被引:1,自引:0,他引:1  
Abstract: Myelinated CNS tissues from homozygous/hemizygous and heterozygous jimpy rumpshaker jp rsh mutant mice were examined to determine the consequences on myelin structure of this mutation in the proteolipid protein (PLP) gene. Polyacrylamide gel electrophoresis and immunoblotting of brain homogenates confirmed that there was a decrease in PLP levels on the B6C3 genetic background onto which this gene was bred. We also observed an increase in level of a protein band that could correspond to the uncharacterized 10-kDa PLP previously reported in jp rsh mice on an Rb(1.3) 1Bnr background. High-performance TLC and densitometry of lipids from brain homogenate and isolated myelin revealed a decrease in content of cerebrosides and sulfatides. Electron microscopy on optic nerves revealed that normal radial component is retained in jp rsh myelin, further substantiating that PLP is not a component of this junctional complex. X-raydiffraction measurements on unfixed optic nerves showed that the jp rsh period is 5–10 Å larger than normal. Moreover, jp rsh optic nerve myelin was unstable, as evidenced by a continual increase in the period postdissection. jp rsh myelin that was equilibrated at varying pH and ionic strength typically had a larger than normal period under all conditions (both swelling and compacting). Our findings thus demonstrate that the biochemical abnormalities in the jp rsh mutant correlate with a wider periodicity and less stable packing of the myelin.  相似文献   

18.
Abstract— The composition of sphingolipids and phospholipids of mouse brain during myelination was determined in normal animals and in mice with a genetically-determined disorder of myelin formation. Myelination was normally characterized by a two-fold increase in total phospholipids of brain, a four-fold increase in total sphingolipids, and a six-fold increase in cerebrosides. The Jimpy mutant, with defective formation of myelin in the central nervous system, demonstrated a marked deficiency of cerebrosides and a significantly lower content of total sphingolipids, without alteration of the composition of phospholipids. The increasing content of cerebrosides in the brains of the leucodystrophic mutant at the time in development when myelination is most active and the subsequent relative deficit suggest that the failure of myelin formation is not the result of a defect in biosynthesis of cerebrosides.  相似文献   

19.
ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain   总被引:2,自引:0,他引:2  
ABCA2, a member of the ATP-binding cassette (ABC) transporter family, is localized mainly to late endosome/lysosomes of oligodendrocytes in brain, but the physiological role and function of ABCA2 are unknown. In this study, we generated mutant mice (ABCA2-null) by targeting the abca2 gene. ABCA2-null mice exhibited a phenotype including lower pregnancy rate and body weight, shorter latency period on the balance beam, and sensitization to environmental stress compared with wild type mice but no abnormality in the cytoarchitectonic and compact myelin structure or oligodendroglial differentiation. Lipid analysis of brain from 11 days to 64 weeks of age revealed significant accumulation of gangliosides along with reduced sphingomyelin (SM) from 4 weeks to 64 weeks of age and accumulation of cerebrosides and sulfatides at 64 weeks of age in ABCA2-null mice compared with wild type mice. In addition, a significant accumulation of the major ganglioside GM1 and reduced SM was detected in the myelin fraction of ABCA2-null brain. Comparison of ABCA2-null and wild type mice revealed weak ABCA2 immunoreactivity in some large pyramidal cells of wild type brain. These results suggest that ABCA2 is involved in the intracellular metabolism of sphingolipids in the brain, particularly SM and gangliosides in oligodendrocytes and certain neurons.  相似文献   

20.
Abstract— The lipid composition of chick brain and sciatic nerve was determined during development. It was confirmed that the addition of CaCl2 to solvents during the extraction of lipids from brain results in much higher yields of diphosphoinositides particularly from unmyelinated embryo brain. Unlike the earlier report for rat brain, the recovery of triphosphoinositides was also Substantially increased. The amount of CaCl2, required to achieve optimal recoveries decreased with increasing age and addition of more than this optimal amount depressed the yields of polyphosphoinositides, particularly triphosphoinositides. CaCl2, addition did not improve the yield of diphosphoinositides from sciatic nerve of any age but drastically reduced recovery of triphosphoinositidcs. Differenccs in the effect of CaCl2 were not the result of variation in the tissue concentrations of calcium or magnesium.
The lipid composition of sciatic nerve closely reflected that of the myelin. Both polyphosphoinositides were absent initially and their accumulation paralleled that of cerebrosides and sulfatides. The concentration of diphosphoinositides remained constant after the period of most active myelination while triphosphoinositides and the galactolipids continued to increase suggesting maturational changes in the myelin composition. The pattern of deposition in chick brain was similar except for the much greater contribution of non-myelin structures. Both polyphosphoinositides were present in equimolar amounts in pre-myelination embryonic tissue. The concentration of diphosphoinositides increased during active myelination only while triphosphoinositides continued to increase thereafter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号