首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinases play a pivotal role in the propagation and modulation of transmembrane signaling pathways. Two major classes of receptors, G-protein-linked and tyrosine kinase receptors not only propagate signals but also are substrates for phosphorylation in response to stimulation by agonist ligands. Insulin (operating via tyrosine kinase receptors) and catecholamines (operating by G-protein-linked receptors) are counterregulatory with respect to lipid and carbohydrate metabolism. How, on a cellular level, these two distinct classes of receptors may cross-regulate each other remains controversial. In the present work we identify a novel cross-talk between members of two distinct classes of receptors, tyrosine kinase (insulin) and G-protein-linked (beta-adrenergic) receptors. Treatment of DDT1 MF-2 hamster vas deferens smooth muscle cells with insulin promoted a marked attenuation (desensitization) of beta-adrenergic receptor-mediated activation of adenylylcyclase. Measured by immune precipitation of beta 2-adrenergic receptors from cells metabolically labeled with [32P]orthophosphate, the basal state of receptor phosphorylation was increased 2-fold by insulin. Phosphoamino acid analysis revealed that for insulin-stimulated cells, the beta 2-adrenergic receptors showed increased phosphorylation on tyrosyl and decreased phosphorylation on threonyl residues. Phosphorylation of the beta-adrenergic receptor was rapid and peaked at 30 min following stimulation of cells by insulin. beta-Adrenergic receptor phosphorylation and attenuation of catecholamine-sensitive adenylylcyclase provide a biochemical basis for the counterregulatory effects of insulin upon catecholamine action.  相似文献   

2.
Leptin regulates bone formation via the sympathetic nervous system   总被引:70,自引:0,他引:70  
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes. NA (1 microM) elevates BDNF levels by four-fold after 6 h of incubation. Its stimulation was partly inhibited by either the beta1-adrenergic antagonist atenolol, the beta2-adrenergic antagonist ICI 118,551, or by the alpha1-adrenergic antagonist prazosin, while the alpha2-adrenergic antagonist yohimbine showed no effect. BDNF levels in astrocytes were increased by the specific beta1-adrenergic agonist dobutamine and the beta2-adrenergic agonist salbutamol, as well as by adenylate cyclase activation (by forskolin) and PKA activation (by dBcAMP). However, none of the tested agonists or mediators of the intracellular beta-adrenergic pathways were able to reach the level of NA's stimulatory effect. BDNF cellular levels were also elevated by the alpha1-adrenergic agonist methoxamine, but not by the alpha2-adrenergic agonist clonidine. The increase in intracellular Ca2+ by ionophore A23187 showed no effect, whereas PKC activation by phorbol 12-myristate 13-acetate (TPA) potently stimulated BDNF levels in the cells. The methoxamine-stimulated BDNF synthesis was inhibited by desensitizing pretreatment with TPA, indicating that the alpha1-stimulation was mediated via PKC activation. In conclusion, the synthesis of astrocytic BDNF stimulated by noradrenergic neuronal activity is an adaptable process using multiple types (alpha1 and beta1/beta2) of adrenergic receptor activation.  相似文献   

4.
Vasoconstriction and subsequent glycogenolysis stimulated by immune complex infusion into perfused rat livers was inhibited by prior infusion of isoproterenol. Similarly, isoproterenol inhibited the biosynthesis of bioactive lipid autacoids such as platelet-activating factor, prostaglandin E2, and thromboxane B2 which was stimulated by immune aggregates. The adrenergic receptor specificity of these effects was determined through the use of specific adrenergic subtype-specific agonists and antagonists to be mediated by beta 2-adrenergic receptors. Indirect evidence for the differential expression of hepatic sinusoidal and parenchymal beta-adrenergic receptors in the male rat during ontogeny suggested that inhibition of immune aggregate-stimulated autacoid biosynthesis, vasoconstriction, and glycogenolysis by isoproterenol occurs at a sinusoidal locus, most likely Kupffer cells. In contrast with the ability of beta 2-adrenergic agonists to inhibit immune aggregate- and platelet-activating factor-stimulated hepatic metabolism, dibutyryl cyclic AMP did not mimic these sinusoidal beta 2-adrenergic effects, despite stimulating hepatic parenchymal cell glycogenolysis as effectively as isoproterenol. These observations suggest a role for cyclic AMP-independent mechanisms in the regulation of heterologous stimulus-response coupling by hepatic sinusoidal beta 2-adrenergic receptors.  相似文献   

5.
To determine the intracellular signaling mechanism of the 5-HT(2C) receptor endogenously expressed in choroid plexus epithelial cells, we implemented a strategy of targeted disruption of protein-protein interactions. This strategy entails the delivery of conjugated membrane-permeable peptides that disrupt domain interaction at specific steps in the signaling cascade. As proof of concept, two peptides targeted against receptor-G protein interaction domains were examined. Only G(q)CT, which targets the receptor-G(q) protein interacting domain, disrupted 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. G(s)CT, targeting the receptor-G(s) protein, disrupted beta2 adrenergic receptor-mediated activation of cAMP but not 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. The peptide MPS-PLCbeta1M, mimicking the domain of phospholipase Cbeta1 (PLCbeta1) interacting with active Galpha(q), also blocked 5-HT(2C) receptor activation. In contrast, peptides PLCbeta2M and Phos that bind to and sequester free Gbetagamma subunits were ineffective at blocking 5-HT(2C) receptor-mediated phosphoinositol turnover. However, both peptides disrupted Gbetagamma-mediated alpha(2A) adrenergic receptor activation of mitogen-activated protein kinase. These results provide the first direct demonstration that active Galpha(q) subunits mediate endogenous 5-HT(2C) receptor activation of PLCbeta and that Gbetagamma subunits released from Galpha(q) heterotrimeric proteins are not involved. Comparable results were obtained with metabotropic glutamate receptor 5 expressed in astrocytes. Thus, conjugated, membrane-permeable peptides are effective tools for the dissection of intracellular signals.  相似文献   

6.
Findings from animal studies have suggested that bone remodeling is under beta-adrenergic control. However, the level of adrenergic inhibition required to achieve the most favorable effects on the skeleton remains unknown. To address this question, we compared the effects of low (0.1 mg/Kg/day), medium (5 mg/Kg/day) or high (20 mg/Kg/day) doses of propranolol given 5 days per week for 10 weeks in ovariectomized (OVX) rats. Characteristics of bone microarchitecture, biomechanical properties and bone turnover were investigated, whilst heart functions were assessed by echocardiography and catheterization of the left ventricle. We first confirmed the expression of Adrbeta2R and the absence of Adrbeta1R on osteoblasts by PCR and confocal microscopy. We then showed that low dose propranolol prevented OVX induced bone loss by increasing bone formation (+30% of MAR vs. placebo, P = 0.01) and decreasing bone resorption (-52% of osteoclast surface on bone surface vs. placebo, P = 0.01). Consequently, rats receiving 0.1 mg/kg/day propranolol displayed higher stress (+27%), intrinsic energy (+28.7%) and Young's Modulus in compression versus placebo (all, P < 0.05). No significant effects on heart hemodynamic parameters were found in rats receiving this dose. In contrast, medium and high doses of propranolol had a negative effect on heart functions but no significant protective effects on bone mass in ovariectomized rats. These results, consistent with the dominant nature of the high bone mass phenotype and normal heart function of Adrbeta2R-deficient mice, suggest that low doses of beta-blockers may have a therapeutic utility in the treatment of osteoporosis with high selectivity for bone tissues.  相似文献   

7.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

8.
Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.  相似文献   

9.
Hypogonadism is considered to be one of the major risk factors for osteoporosis in men. Therefore, it is an important goal for skeletal research to improve our understanding of the skeletal effects of androgens. Androgen deficiency during growth is associated with a failure to acquire normal peak bone mass, and there is good evidence that the effects of androgens on skeletal growth and the development of a male skeletal phenotype are mediated through the androgen receptor. In adult men, acute withdrawal of androgens by surgical or chemical castration induces high turnover bone loss. Similarly, orchidectomy of aged, non-growing male rats is associated with a pronounced and sustained increase in bone turnover and with true loss of cancellous and cortical bone. Interestingly, the changes in bone turnover induced by orchidectomy are paralleled by a concomitant increase in B lymphopoiesis in bone marrow of rats and mice. Although there is firm evidence that male bone metabolism can be influenced by androgens and estrogen, a variety of clinical and animal experimental data have strongly suggested that, under physiological circumstances, the maintenance of cancellous bone mass in males involves the skeletal action of estrogen derived from aromatization of androgens. Aged male rats appear to closely mimic the conditions induced by androgen withdrawal in adult humans, and this animal model may be used 1) to elucidate further the role of muscle as a mediator of the actions of androgens on bone, 2) to explore the regulatory functions of androgens and estrogens in the male skeleton and the immune system, and 3) to find new treatment strategies for the prevention and treatment of osteoporosis in men.  相似文献   

10.
Cardiac hypertrophy often leads to heart failure and is associated with abnormal myocardial adrenergic signaling. This enlargement of myocardial mass can involve not only an increase in cardiomyocyte size, but increased proliferation of cardiac fibroblasts. A potential key player in the cardiac hypertrophic response is the ERK family of MAPKs. To gain mechanistic insight into adrenergic regulation of myocardial mitogenic signaling, we examined beta-adrenergic receptor (beta-AR) stimulation of ERK activation and DNA synthesis in cultured adult rat cardiac fibroblasts, including the involvement of tyrosine kinases in this signaling pathway. Addition of the beta-AR agonist isoproterenol (ISO) to serum-starved cells induced DNA synthesis in a dose-dependent manner, and this was inhibited by selective inhibitors of the epidermal growth factor receptor (EGFR). Importantly and in agreement with the involvement of MAPKs and the EGFR in this response in cardiac fibroblasts, the EGFR inhibitor AG1478 attenuated ISO-induced ERK phosphorylation. Moreover, pretreatment with PP2, a selective inhibitor of the Src tyrosine kinase, attenuated both ISO-mediated EGFR phosphorylation and ERK activation. Furthermore, studies in these cardiac fibroblasts showed that phosphatidylinositol 3-kinase contributed to beta-AR-mediated ERK activation, but not to EGFR activation. Finally, studies using selective inhibitors of matrix metalloproteases indicated that they and heparin-bound EGF shedding were involved in beta-AR-induced ERK activation and subsequent DNA synthesis in cardiac fibroblasts. Because these cells primarily express the beta(2)-AR subtype, our findings indicate that beta(2)-AR-mediated EGFR transactivation of intracellular tyrosine kinase signaling pathways is the major signaling pathway responsible for the adrenergic stimulation of mitogenesis of cardiac fibroblasts.  相似文献   

11.
Although the excitatory effects of noradrenaline have been thoroughly studied in the central nervous system, there is relatively little known about the adrenergic effects on Ca2+ dynamics of dendrites. In the present study, we imaged basal dendrites of layer 5 pyramidal neurons in the prefrontal cortex using two-photon microscopy. In our experiments noradrenaline, applied in the bath, enhanced excitability of layer 5 pyramidal neurons. The number of evoked action potentials following current injection to the soma increased by 44.7% on average. In the basal dendrites and spines the evoked Ca2+ responses were also markedly enhanced. Noradrenaline-induced effects could be blocked by the beta-adrenergic blocker propranolol. Our data, that activation of the noradrenergic system increases excitability of layer 5 pyramidal neurons via beta-adrenergic receptors and enhances Ca2+ signaling in basal dendrites, suggest a cellular site of action for noradrenaline to improve the integrative capabilities of dendrites.  相似文献   

12.
The changes in the response of adrenergic receptors alpha and beta in the blood vessels in the working muscles in a hindlimb in cats were studied after intra-arterial administration of noradrenaline, isoprenaline and during electric stimulation of the sympathetic trunk. The experiments were carried out during alpha-adrenergic receptors blockade with dihydroergotamine (0.3 mg/kg) beta-adrenergic receptors blockade with propranolol (1 mg/kg) and blockade of acetylcholine M receptors with atropine (0.5 mg/kg). The investigations were performed at rest, during exercise (electric stimulation of the sciatic nerve) and after the exercise. The following results deserve attention: 1) beta-adrenergic receptors blockade reduced significantly the alpha-adrenolytic effect of exercise restoring the ability of blood vessel to constriction in response to noradrenaline; 2) the vasodilator effect of isoprenaline evident in resting state and maintained to some extent during exercise was abolished completely by preceding alpha-adrenergic blockade. The changes in the reactivity of resistance vessels in working skeletal muscles to noradrenaline, with abolition of its vasoconstrictor effect, have been shown by Rein [7] and others authors [2, 5]. Similarly, it is well known that the resistance vessels contain two types of adrenergic receptors alpha and beta, and that the response of the vessels to stimulation of these receptors are different [1]. In view of the recently published observations of Jarhult and Lundvall suggesting that the beta-adrenergic receptors play an important physiological role [6] in the arterial part of the microcirculation [6] and in view of the hypothesis put forward by Kunos and Szentivanyj that alpha and beta receptors can be transformed depending on the intensity of tissue metabolism [8] it seemed worth while to study more systematically the changes of the reactivity of alpha and beta adrenergic receptors in the vascular bed of the skeletal muscles during and after muscle exercise.  相似文献   

13.
The induction of proinflammatory cytokines in stressed myocardium is considered an innate immune response, but the role of beta-adrenergic signaling in this proinflammatory response and the mechanisms of cardioprotection by beta-blockers are not fully understood. In the present study, we analyzed interleukin-6 (IL-6) formation and promoter activation in beta-adrenoceptor-stimulated neonatal rat cardiomyocytes, in transgenic mice with cardiac overexpression of beta1-adrenoceptors, and in failing human myocardium. IL-6 formation and release in cultured cardiomyocytes under beta-adrenoceptor stimulation requires the activation of activating protein-1 (AP-1) binding sites and of cAMP response elements (CRE) in the IL-6 promoter, but this release (140 +/- 6 pg/mL medium under 10(-6) M isoproterenol vs. 81 +/- 3 pg/mL unstimulated, P < 0.05) is moderate compared with that under inflammatory stimulation (855 +/- 44 pg/mL, endotoxin 0.1microg/mL). Similarly, IL-6 is induced together with CRE- and AP-1 activation in the left ventricle (LV) of beta1-transgenic mice before the onset of failure. However, we observed IL-6 induction with activation of NF-kappaB in addition to CRE and AP-1 in beta1-transgenic mice at the age of 22 weeks and in explanted human LV after full development of failure. Treatment with beta-blockers lowered myocardial IL-6 as well as AP-1, NF-kappaB, and CRE activation. Therefore, the activation of AP-1 and CRE is part of beta-adrenergic signal transduction for IL-6 induction in nonfailing and failing cardiomyocytes, whereas NF-kappaB activation contributes only in overloaded failing myocardium.  相似文献   

14.
Adrenergic regulation of adipocyte metabolism   总被引:12,自引:0,他引:12  
Adipocytes can be readily isolated from intact adipose tissue. In adipocytes from hamster and human white adipose tissue it is possible to demonstrate beta, alpha 1, and alpha 2 adrenoceptors. Alpha 2 adrenoceptor activation inhibits while beta adrenoceptor activation stimulates cyclic AMP accumulation and lipolysis. The effects of catecholamines on cyclic AMP accumulation are mediated through regulation of adenylate cyclase activity, which is activated through beta adrenoceptors and inhibited through alpha 2 adrenoceptors. Activation of alpha 1 adrenergic receptors has been shown to be associated with elevations of cytosol calcium and increased turnover of phosphatidylinositol. In white adipocytes, the only known alpha 1 adrenergic effects are inhibition of glycogen synthase and stimulation of glycogen phosphorylase via mechanisms distinct from those by which cyclic AMP produces similar end effects. In brown adipocytes, alpha 1 adrenoceptor activation stimulates respiration. Thyroid hormones primarily regulate the sensitivity of adipocytes to beta-adrenergic amines while having little effect on alpha adrenoceptor sensitivity.  相似文献   

15.
Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are mediated primarily through activation of the tumor cell cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway by the beta(2) adrenergic receptor (encoded by ADRB2). Tumors in stressed animals showed markedly increased vascularization and enhanced expression of VEGF, MMP2 and MMP9, and we found that angiogenic processes mediated the effects of stress on tumor growth in vivo. These data identify beta-adrenergic activation of the cAMP-PKA signaling pathway as a major mechanism by which behavioral stress can enhance tumor angiogenesis in vivo and thereby promote malignant cell growth. These data also suggest that blocking ADRB-mediated angiogenesis could have therapeutic implications for the management of ovarian cancer.  相似文献   

16.
Fibroblast growth factor 2 (FGF2) can enhance the proliferative capacity of bone and bone marrow stromal cells; however, the mechanisms behind this effect are not well described. We present a whole-cell kinetic model relating receptor-mediated binding, internalization, and processing of FGF2 to osteoblastic proliferative response. Focusing on one of the potential signaling complex stoichiometries, we utilized experimentally measured and modeled estimated rate constants to predict in vitro proliferation and distinguish between potential binding orders. We found that piecewise assemblage of a ternary signaling complex may occur in several ways depending on the local binding environment. Using experimental data of endocytosed FGF2 as a constraint, we have also shown evidence of potential multistep processes involved in heparan-sulfate proteoglycans-bound FGF2 release, internalization, and fragment formation in conjunction with the normal metabolism of the proteoglycan.  相似文献   

17.
Loss of mechanical loading induces rapid bone loss resulting from reduced osteoblastogenesis and decreased bone formation. The signaling mechanisms involved in this deleterious effect on skeletal metabolism remain poorly understood. We have previously shown that hindlimb suspension in rats increases osteoblast apoptosis associated with decreased phosphatidylinositol 3-kinase (PI3K) signaling. In this study, we investigated whether transforming growth factor (TGF)-beta2 may prevent the altered signaling and osteoblast apoptosis induced by skeletal unloading in vivo. Hindlimb suspension-induced decreased bone volume was associated with reduced alpha(5)beta(1)-integrin protein levels and PI3K/Akt signaling in unloaded bone. Continuous administration of TGF-beta2 using osmotic minipumps prevented the decreased alpha(5)beta(1)-integrin expression and the reduced PI3K/Akt signaling in unloaded bone, resulting in the prevention of osteoblast apoptosis. We also show that TGF-beta2 prevented the decreased Bcl-2 levels induced by unloading, which suggests that TGF-beta2 targets Bcl-2 via PI3K/Akt to prevent osteoblast apoptosis in unloaded bone. Furthermore, we show that TGF-beta2 prevented the decrease in phosphorylated Bad, the inactive form of the proapoptotic protein Bad, induced by unloading. These results identify a protective role for TGF-beta2 in osteoblast apoptosis induced by mechanical unloading via the alpha(5)beta(1)/PI3K/Akt signaling cascade and downstream Bcl-2 and phospho-Bad survival proteins. We thus propose a novel role for TGF-beta2 in protection from unloading-induced apoptosis in vivo.  相似文献   

18.
While bone adaptive response to its mechanical environment was considered to be controlled locally by cytokines and systemic hormones, some recent work suggests that it could also be neuronally regulated. Bone is indeed very densely innervated and many experimental and clinical studies have previously shown the involvement of the nervous system in the control of bone metabolism. The demonstration that the central nervous system regulates bone mass via the sympathetic nervous system (SNS) has prompted recent studies aimed to investigate the role of the SNS in the bone mechano-adaptive response. This review will focus on this work and summarize the evidence for a contribution of the beta-adrenergic signalling in the response of bone cells to mechanical loading. The apparent conflicting results obtained in diverse experimental models of loading and unloading, at different skeletal sites, and in relation to various hormonal levels, will be discussed. While those studies do not support a major influence of the SNS on the bone mechano-adaptive response, there is nevertheless strong evidence that the SNS is part of a complex system which contributes to the metabolic regulation of bone.  相似文献   

19.
The transition of rhodopsin from the inactive to the active state is associated with proton uptake at Glu(134) (1), and recent mutagenesis studies suggest that protonation of the homologous amino acid in the alpha(1B) adrenergic receptor (Asp(142)) may be involved in its mechanism of activation (2). To further explore the role of protonation in G protein-coupled receptor activation, we examined the effects of pH on the rate of ligand-induced conformational change and on receptor-mediated G protein activation for the beta(2) adrenergic receptor (beta(2)AR). The rate of agonist-induced change in the fluorescence of NBD-labeled, purified beta(2)AR was 2-fold greater at pH 6.5 than at pH 8, even though agonist affinity was lower at pH 6.5. This biophysical analysis was corroborated by functional studies; basal (agonist-independent) activation of Galpha(s) by the beta(2)AR was greater at pH 6.5 compared with pH 8.0. Taken together, these results provide evidence that protonation increases basal activity by destabilizing the inactive state of the receptor. In addition, we found that the pH sensitivity of beta(2)AR activation is not abrogated by mutation of Asp(130), which is homologous to the highly conserved acidic amino acids that link protonation to activation of rhodopsin (Glu(134)) and the alpha(1B) adrenergic receptor (Asp(142)).  相似文献   

20.
1. 32P-labelled inorganic phosphate incorporation into total and mitochondrial phospholipids was studied, in vitro, on brown adipose tissue (BAT) of control and cold-acclimated rats. 2. It was found that norepinephrine acts as in vivo, on BAT phospholipid metabolism via alpha 1 adrenergic receptors specifically increasing phosphatidic acid and phosphatidylinositol turnover with the same magnitude in both groups. 3. Cold-induced alpha 1 adrenergic desensitization is not as important as cold-induced beta adrenergic desensitization. 4. No specific effect of norepinephrine was seen in mitochondrial phospholipid turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号