首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong negative reactions, physical symptoms, and behavioral disruptions due to environmental odors are common in the adult population. We investigated relationships among such environmental chemosensory responsivity (CR), personality traits, affective states, and odor perception. Study 1 showed that CR and neuroticism were positively correlated in a sample of young adults (n = 101), suggesting that persons high in neuroticism respond more negatively to environmental odors. Study 2 explored the relationships among CR, noise responsivity (NR), neuroticism, and odor perception (i.e., pleasantness and intensity) in a subset of participants (n = 40). High CR was associated with high NR. Regression analyses indicated that high CR predicted higher odor intensity ratings and low olfactory threshold (high sensitivity) predicted lower pleasantness ratings. However, neuroticism was not directly associated with odor ratings or thresholds. Overall, the results suggest that CR and odor thresholds predict perceptual ratings of odors and that high CR is associated with nonchemosensory affective traits.  相似文献   

2.
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.  相似文献   

3.
A modified paired-associate learning paradigm was used to testwhether odors or verbal odor labels evoked more emotional memories.Subjects were presented with emotionally positive and negativepaintings (to-be-remembered items) in association with positiveand negative odors and odor labels. Painting recall and associatedemotional experience were tested after 48 h. Odor-evoked memorieswere found to be more emotional than verbally cued memorieson a variety of measures. Moreover, if the cue for recall (odoror label) was hedonically congruent with the painting to beremembered, memory for original emotional experiences was enhanced.The findings are discussed within a general cognitive frameworkand implications for using odors to dissociate the emotionaland representational aspects of memory are addressed. Chem.Senses 20: 517–528, 1995.  相似文献   

4.
Olfactory conditioning of positive performance in humans   总被引:2,自引:0,他引:2  
Chu S 《Chemical senses》2008,33(1):65-71
Olfactory conditioning effects have been widely demonstrated in the animal literature but more seldom in human populations and rarely of consciously controlled human behaviors. Building upon previous work on negative performance, we report the first experimental evidence that odors can be used effectively in a classical conditioning paradigm to positively influence human behavior. In the present study, underachieving schoolchildren experienced unexpected success at a paper-and-pencil task in the presence of an ambient odor. When they later experienced the same odor again, performance on other tasks was superior to that of relevant control groups. These data substantially extend previous results on human olfactory classical conditioning and show that odors potentially can be used to exert positive influences on human behavior.  相似文献   

5.
It has been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation and other olfactory psychophysical phenomena. In a mathematical model based on the bulbar anatomy and physiology, the inputs from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity of the bulb to specific odor inputs. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or increase its sensitivity to interested searching odors. Other olfactory psychophysical phenomena such as cross-adaptation etc. are discussed as well.  相似文献   

6.
Understanding how hunger state relates to olfactory sensitivity has become more urgent due to their possible role in obesity. In 2 studies (within-subjects: n = 24, between-subjects: n = 40), participants were provided with lunch before (satiated state) or after (nonsatiated state) testing and completed a standardized olfactory threshold test to a neutral odor (Experiments 1 and 2) and discrimination test to a food odor (Experiment 2). Experiment 1 revealed that olfactory sensitivity was greater in the nonsatiated versus satiated state, with additionally increased sensitivity for the low body mass index (BMI) compared with high BMI group. Experiment 2 replicated this effect for neutral odors, but in the case of food odors, those in a satiated state had greater acuity. Additionally, whereas the high BMI group had higher acuity to food odors in the satiated versus nonsatiated state, no such differences were found for the low BMI group. The research here is the first to demonstrate how olfactory acuity changes as a function of hunger state and relatedness of odor to food and that BMI can predict differences in olfactory sensitivity.  相似文献   

7.
8.
目的 蜜蜂天生具有丰富的嗅觉辨识能力,觅食、交配、导航以及社交活动均依赖其嗅觉系统,是研究嗅觉感知和学习记忆的行为及神经机制的理想模型。蜜蜂既能够将某个复合气味作为一个整体也可以将复合气味的各组成成分进行辨别和区分,但是在特征依赖的联合记忆中依据何种原则进行加工并存储到长期记忆还不清楚。方法 本文利用特征阳性(feature positive:AB+,B-)和特征阴性(feature negative:AB-,B+)的奖赏性嗅觉条件化,训练蜜蜂对复合气味和成分气味的辨别,并检测蜜蜂对复合气味(AB)、成分气味(B)以及特征气味(A)的中长时记忆(3 h)和长时记忆(24 h)。结果 在特征阳性的奖赏性嗅觉条件化中,蜜蜂对训练过的气味可以形成稳定的中长时和长时记忆,并且对复合气味中的特征气味的记忆与复合气味的记忆呈现高度相似。但在特征阴性的奖赏性嗅觉条件化中,蜜蜂虽能够在3 h和24 h对训练过的两种气味具有显著的伸喙反应差异,且对特征阴性的气味无显著反应,但对复合气味的反应随时间的推移而增加。结论 实验结果表明,蜜蜂选择性地将与奖赏信息联合出现的气味巩固到长时记忆中,但并未依据特征成分加工储存到长时记忆中。奖赏信息预示着食物源,与生存息息相关,表明对环境信息进行选择性的记忆巩固加工并储存可能是低等动物高效地编码生存相关信息的重要策略。  相似文献   

9.
Odor Perception and Beliefs about Risk   总被引:14,自引:5,他引:9  
Dalton  Pamela 《Chemical senses》1996,21(4):447-458
Although the perceptual response to environmental odors canbe quite variable, such variation has often been attributedto differences in individual sensitivity. An information-processinganalysis of odor perception, however, treats both the receptionand the subsequent evaluation of odor information as determinantsof the perceptual response. Two experiments investigated whethera factor that influenced the evaluation stage affected the judgementof odor quality and the degree of adaptation to the odor. Peoplewere surveyed in order to measure their tacit perceptions ofthe healthfulness or hazardousness of nine common olfactorystimuli, and the instructional context influenced quality perception.In a second experiment subjects were exposed to an ambient odorunder one of three different conditions, and odorant characterizationinfluenced the degree of adaptation to the odor. Subjects whowere led to believe the odor was a natural, healthy extractshowed adaptation; those told that the odor was potentiallyhazardous showed apparent sensitization; while those told thatthe odor was a common olfactory test odorant showed a mixedpattern: some exhibited adaptation, whereas others showed sensitization.However, detection thresholds obtained before and after exposureshowed adaptation effects that are characteristic of continuousexposure. These findings raise the possibility that cognitivefactors may be modulating the overall sensory perception ofodor exposure (i) for some individuals who exhibit extreme sensitivityto odors and (ii) in situations where adaptation to environmentalodors is expected but does not occur. Chem. Senses 21: 447–458,1996.  相似文献   

10.

Objective

Decrease of olfactory function in Parkinson''s disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.

Methods

We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin'' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.

Results

Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin'' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.

Conclusion

The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.  相似文献   

11.
Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE) through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram) against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants’ abilities to identify odors (single odors and in binary mixture), to evaluate and discriminate the odors’ intensity, and determine the hedonic valence of odors. The results revealed an “olfactory anhedonia” expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an “olfactory negative alliesthesia”, during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker) that are persistent after the clinical improvement of depressive symptoms (trait marker). These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment). They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.  相似文献   

12.
Associative cortex features in the first olfactory brain relay station   总被引:1,自引:0,他引:1  
Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as?mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron.  相似文献   

13.
Sensory systems sample the external world actively, within the context of self-motion induced disturbances. Mammals sample olfactory cues within the context of respiratory cycles and have adapted to process olfactory information within the time frame of a single sniff cycle. In plume tracking insects, it remains unknown whether olfactory processing is adapted to wing beating, which causes similar physical effects as sniffing. To explore this we first characterized the physical properties of our odor delivery system using hotwire anemometry and photo ionization detection, which confirmed that odor stimuli were temporally structured. Electroantennograms confirmed that pulse trains were tracked physiologically. Next, we quantified odor detection in moths in a series of psychophysical experiments to determine whether pulsing odor affected acuity. Moths were first conditioned to respond to a target odorant using Pavlovian olfactory conditioning. At 24 and 48 h after conditioning, moths were tested with a dilution series of the conditioned odor. On separate days odor was presented either continuously or as 20 Hz pulse trains to simulate wing beating effects. We varied pulse train duty cycle, olfactometer outflow velocity, pulsing method, and odor. Results of these studies, established that detection was enhanced when odors were pulsed. Higher velocity and briefer pulses also enhanced detection. Post hoc analysis indicated enhanced detection was the result of a significantly lower behavioral response to blank stimuli when presented as pulse trains. Since blank responses are a measure of false positive responses, this suggests that the olfactory system makes fewer errors (i.e. is more reliable) when odors are experienced as pulse trains. We therefore postulate that the olfactory system of Manduca sexta may have evolved mechanisms to enhance odor detection during flight, where the effects of wing beating represent the norm. This system may even exploit temporal structure in a manner similar to sniffing.  相似文献   

14.
Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a cGMP-gated channel. The cGMP-dependent kinase functions in AWC neurons during odor exposure to direct adaptation to AWC-sensed odors, suggesting that adaptation is a cell intrinsic process initiated by cGMP. A predicted phosphorylation site on the beta subunit of the cGMP-gated channel is required for adaptation after short odor exposure, suggesting that phosphorylation of signaling molecules generates adaptation at early time points. A predicted nuclear localization signal within EGL-4 is required for adaptation after longer odor exposure, suggesting that nuclear translocation of EGL-4 triggers late forms of adaptation.  相似文献   

15.
The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT) and piriform cortex (PCX), differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations.  相似文献   

16.
The brain's link between perception and action involves several steps, which include stimulus transduction, neuronal coding of the stimulus, comparison to a memory template and choice of an appropriate behavioral response. All of these need time, and many studies report that the time needed to compare two stimuli correlates inversely with the perceived distance between them. We developed a behavioral assay in which we tested the time that a honeybee needs to discriminate between odors consisting of mixtures of two components, and included both very similar and very different stimuli spanning four log-concentration ranges. Bees learned to discriminate all odors, including very similar odors and the same odor at different concentrations. Even though discriminating two very similar odors appears to be a more difficult task than discriminating two very distinct substances, we found that the time needed to make a choice for or against an odor was independent of odor similarity. Our data suggest that, irrespective of the nature of the olfactory code, the bee olfactory system evaluates odor quality after a constant interval. This may ensure that odors are only assessed after the olfactory network has optimized its representation.  相似文献   

17.

Background

Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors.

Methodology/Principal Findings

Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors.

Conclusions

Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.  相似文献   

18.
The olfactory system combines input from multiple receptor types to represent odor information, but there are few explicit examples relating olfactory receptor (OR) activity patterns to odor perception. To uncover these relationships, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). In both populations, consistent with previous studies, we replicated three previously reported associations (β-ionone/OR5A1, androstenone/OR7D4, cis-3-hexen-1-ol/OR2J3 LD-band), but not for odors containing aldehydes, suggesting that olfactory phenotype/genotype studies are robust across populations. Two novel associations between an OR and odor perception contribute to our understanding of olfactory coding. First, we found a SNP in OR51B2 that associated with trans-3-methyl-2-hexenoic acid, a key component of human underarm odor. Second, we found two linked SNPs associated with the musk Galaxolide in a novel musk receptor, OR4D6, which is also the first human OR shown to drive specific anosmia to a musk compound. We noticed that SNPs detected for odor intensity were enriched with amino acid substitutions, implying functional changes of odor receptors. Furthermore, we also found that the derived alleles of the SNPs tend to be associated with reduced odor intensity, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study provides information about coding for human body odor, and gives us insight into broader mechanisms of olfactory coding, such as how differential OR activation can converge on a similar percept.  相似文献   

19.
Chemosensory event-related potentials (CSERP) can be used toexamine central nervous odor processing. An important questionfor understanding odor perception is how different concentrationsare processed. In the present study two odors were chosen whichactivate either the olfactory (linalool) or the trigeminal (menthol)system. Both odors were presented to 11 subjects in four differentconcentrations. Four subjects had to attend actively to theodors while the others perceived the odors under passive attention.The results showed that increased concentrations of the olfactorystimulus resulted in shorter latencies of the N1 component butdid not affect the amplitudes of the CSERP. However, the amplitudesof the stimulus dependent, exogenous components (N1, P2) increasedwith higher concentrations of the trigeminal stimulus. The amplitudeof the late positive complex, which reflects endogenous processes,was usually larger when the odorous stimuli had to be attendedto actively. It is concluded that olfactory intensity codingresults in a qualitatively different but not in a stronger neuronalresponse of the human brain. Chem. Senses 22: 9–26, 1997.  相似文献   

20.
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号