首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.  相似文献   

2.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   

3.
Idiopathic dilated cardiomyopathy (IDC) is characterized by left ventricular (LV) enlargement with systolic dysfunction, other causes excluded. When inherited, it represents familial dilated cardiomyopathy (FDC). We hypothesized that IDC or FDC would show with cardiac magnetic resonance (CMR) increased myocardial accumulation of gadolinium contrast at steady state and decreased baseline myocardial blood flow (MBF) due to structural alterations of the extracellular matrix compared with normal myocardium. CMR was performed in nine persons affected with IDC/FDC. Healthy controls came from the general population (n = 6) or were unaffected family members of FDC patients (n = 3) without signs or symptoms of IDC/FDC or any structural cardiac abnormalities. The myocardial partition coefficient for gadolinium contrast (lambda(Gd)) was determined by T1 measurements. LV shape and function and MBF were assessed by standard CMR methods. lambda(Gd) was elevated in IDC/FDC patients vs. healthy controls (lambda(Gd) = 0.56 +/- 0.15 vs. 0.41 +/- 0.06; P = 0.002), and correlated with LV enlargement (r = 0.61 for lambda(Gd) vs. end-diastolic volume indexed by height; P < 0.01) and with ejection fraction (r = -0.80; P < 0.001). The extracellular volume fraction was higher in IDC patients than in healthy controls (0.31 +/- 0.05 vs. 0.24 +/- 0.03; P = 0.002). Resting MBF was lower in IDC patients (0.64 +/- 0.13 vs. 0.91 +/- 0.22; P = 0.01) than unaffected controls and correlated with both the partition coefficient (r = -0.57; P = 0.012) and the extracellular volume fraction (r = -0.56; P = 0.019). The expansion of the extracellular space correlated with reduced MBF and ventricular dilation. Expansion of the extracellular matrix may be a key contributor to contractile dysfunction in IDC patients.  相似文献   

4.
Right ventricular (RV) function is a powerful prognostic indicator in many forms of heart disease, but its assessment remains challenging and inexact. RV dysfunction may alter the normal patterns of RV blood flow, but those patterns have been incompletely characterized. We hypothesized that, based on anatomic differences, the proportions and energetics of RV flow components would differ from those identified in the left ventricle (LV) and that the portion of the RV inflow passing directly to outflow (Direct Flow) would be prepared for effective systolic ejection as a result of preserved kinetic energy (KE) compared with other RV flow components. Three-dimensional, time-resolved phase-contrast velocity, and balanced steady-state free-precession morphological data were acquired in 10 healthy subjects using MRI. A previously validated method was used to separate the RV and LV end-diastolic volumes into four flow components and measure their volume and KE over the cardiac cycle. The RV Direct Flow: 1) followed a smoothly curving route that did not extend into the apical region of the ventricle; 2) had a larger volume and possessed a larger presystolic KE (0.4 ± 0.3 mJ) than the other flow components (P < 0.001 and P < 0.01, respectively); and 3) represented a larger part of the end-diastolic blood volume compared with the LV Direct Flow (P < 0.01). These findings suggest that diastolic flow patterns distinct to the normal RV create favorable conditions for ensuing systolic ejection of the Direct Flow component. These flow-specific aspects of RV diastolic-systolic coupling provide novel perspectives on RV physiology and may add to the understanding of RV pathophysiology.  相似文献   

5.
Increased glucose utilization and regional differences in contractile function are well-known alterations of the failing heart and play an important pathophysiological role. We tested whether, similar to functional derangement, changes in glucose uptake develop following a regional pattern. Heart failure was induced in 13 chronically instrumented minipigs by pacing the left ventricular (LV) free wall at 180 beats/min for 3 wk. Regional changes in contractile function and stress were assessed by magnetic resonance imaging, whereas regional flow and glucose uptake were measured by positron emission tomography utilizing, respectively, the radiotracers [(13)N]ammonia and (18)F-deoxyglucose. In heart failure, LV end-diastolic pressure was 20 +/- 4 mmHg, and ejection fraction was 35 +/- 4% (all P < 0.05 vs. control). Sustained pacing-induced dyssynchronous LV activation caused a more pronounced decrease in LV systolic thickening (7.45 +/- 3.42 vs. 30.62 +/- 8.73%, P < 0.05) and circumferential shortening (-4.62 +/- 1.0 vs. -7.33 +/- 1.2%, P < 0.05) in the anterior/anterior-lateral region (pacing site) compared with the inferoseptal region (opposite site). Conversely, flow was reduced significantly by approximately 32% compared with control and was lower in the opposite site region. Despite these nonhomogeneous alterations, regional end-systolic wall stress was uniformly increased by 60% in the failing LV. Similar to wall stress, glucose uptake markedly increased vs. control (0.24 +/- 0.004 vs. 0.07 +/- 0.01 micromol x min(-1) x g(-1), P < 0.05), with no significant regional differences. In conclusion, high-frequency pacing of the LV free wall causes a dyssynchronous pattern of contraction that leads to progressive cardiac failure with a marked mismatch between increased glucose uptake and regional contractile dysfunction.  相似文献   

6.
This study examined the cardiac structure and function of a unique cohort of documented lifelong, competitive endurance veteran athletes (>50 yr). Twelve lifelong veteran male endurance athletes [mean ± SD (range) age: 56 ± 6 yr (50-67)], 20 age-matched veteran controls [60 ± 5 yr; (52-69)], and 17 younger male endurance athletes [31 ± 5 yr (26-40)] without significant comorbidities underwent cardiac magnetic resonance (CMR) imaging to assess cardiac morphology and function, as well as CMR imaging with late gadolinium enhancement (LGE) to assess myocardial fibrosis. Lifelong veteran athletes had smaller left (LV) and right ventricular (RV) end-diastolic and end-systolic volumes (P < 0.05), but maintained LV and RV systolic function compared with young athletes. However, veteran athletes had a significantly larger absolute and indexed LV and RV end-diastolic and systolic volumes, intraventricular septum thickness during diastole, posterior wall thickness during diastole, and LV and RV stroke volumes (P < 0.05), together with significantly reduced LV and RV ejection fractions (P < 0.05), compared with veteran controls. In six (50%) of the veteran athletes, LGE of CMR indicated the presence of myocardial fibrosis (4 veteran athletes with LGE of nonspecific cause, 1 probable previous myocarditis, and 1 probable previous silent myocardial infarction). There was no LGE in the age-matched veteran controls or young athletes. The prevalence of LGE in veteran athletes was not associated with age, height, weight, or body surface area (P > 0.05), but was significantly associated with the number of years spent training (P < 0.001), number of competitive marathons (P < 0.001), and ultraendurance (>50 miles) marathons (P < 0.007) completed. An unexpectedly high prevalence of myocardial fibrosis (50%) was observed in healthy, asymptomatic, lifelong veteran male athletes, compared with zero cases in age-matched veteran controls and young athletes. These data suggest a link between lifelong endurance exercise and myocardial fibrosis that requires further investigation.  相似文献   

7.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

8.
After myocardial infarction (MI), there is progressive left ventricular (LV) remodeling and impaired exercise capacity. We tested the hypothesis that LV remodeling results in structural and functional changes that determine exercise impairment post-MI. Rats underwent coronary artery ligation (n = 12) or sham (n = 11) surgery followed by serial exercise tests and echocardiography for 16 wk post-MI. LV pressure-volume relationships were determined using a blood-perfused Langendorff preparation. Exercise capacity was 60% of shams immediately post-MI (P < 0.05) followed by a recovery to near normal during weeks 5-8. Thereafter, there was a progressive decline in exercise capacity to +/-40% of shams (P < 0.01). At both 8 and 16 wk post-MI, fractional shortening (FS) was reduced and end-diastolic diameter (EDD) was increased (P < 0.01). However, neither FS nor EDD correlated with exercise at 8 or 16 wk (r(2) < 0.12, P > 0.30). LV septal wall thickness was increased at both 8 (P = 0.17 vs. shams) and 16 wk (P = 0.035 vs. shams) post-MI and correlated with exercise at both times (r(2) >/= 0.50 and P 相似文献   

9.
Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats were exposed to 4 weeks CHH (11% O(2)) versus normoxic controls. RV/body weight ratio increased (P < 0.001 vs. control) while RV systolic and developed pressures were higher. However, LV systolic and developed pressures were significantly reduced. Mitochondrial O(2) consumption was sustained in the hypertrophied RV, ADP/O increased (P < 0.01 vs. control) and proton leak significantly decreased. Conversely, LV mitochondrial O(2) consumption was attenuated (P < 0.05 vs. control) and proton leak significantly increased. In parallel, expression of mitochondrial regulators was upregulated in the hypertrophied RV but not the LV. Our data show that the hypertrophied RV induces expression of mitochondrial regulatory genes linking respiratory capacity and enhanced efficiency to sustained contractile function.  相似文献   

10.
Diastolic dysfunction in volume-overload hypertrophy by aortocaval fistula is characterized by increased passive stiffness of the left ventricle (LV). We hypothesized that changes in passive properties are associated with abnormal myolaminar sheet mechanics during diastolic filling. We determined three-dimensional finite deformation of myofiber and myolaminar sheets in the LV free wall of six dogs with cineradiography of implanted markers during development of volume-overload hypertrophy by aortocaval fistula. After 9 +/- 2 wk of volume overload, all dogs developed edema of extremities, pulmonary congestion, elevated LV end-diastolic pressure (5 +/- 2 vs. 21 +/- 4 mmHg, P < 0.05), and increased LV volume. There was no significant change in systolic function [dP/dt(max): 2,476 +/- 203 vs. 2,330 +/- 216 mmHg/s, P = not significant (NS)]. Diastolic relaxation was significantly reduced (dP/dt(min): -2,466 +/- 190 vs. -2,076 +/- 166 mmHg/s, P < 0.05; time constant of LV pressure decline: 32 +/- 2 vs. 43 +/- 1 ms, P < 0.05), whereas duration of diastolic filling was unchanged (304 +/- 33 vs. 244 +/- 42 ms, P = NS). Fiber stretch and sheet shear occur predominantly in the first third of diastolic filling, and chronic volume overload induced remodeling in lengthening of the fiber and reorientation of the laminar sheet architecture. Sheet shear was significantly increased and delayed at the subendocardial layer (P < 0.05), whereas magnitude of fiber stretch was not altered in volume overload (P = NS). These findings indicate that enhanced filling in volume-overload hypertrophy is achieved by enhanced sheet shear early in diastole. These results provide the first evidence that changes in motion of radially oriented laminar sheets may play an important functional role in pathology of diastolic dysfunction in this model.  相似文献   

11.
In vivo evaluation of the transmural extension of myocardial infarction (TEI) is crucial to prediction of viability and prognosis. With the rise of transgenic technology, murine myocardial infarction (MI) models are increasingly used. Our study aimed to evaluate systolic strain rate (SR), a new parameter of regional function, to quantify TEI in a murine model of acute MI induced by various durations of ischemia followed by 24 h of reperfusion. Global and regional left ventricular (LV) function were assessed by echocardiography (13 MHz, Vivid 7, GE) in 4 groups of wild-type mice (C57BL/6, 2 mo old): a sham-treated group (n = 10) and three MI groups [30 (n = 11), 60 (n = 10), and 90 (n = 9) min of left coronary artery occlusion]. Conventional LV dimensions, anterior wall (AW) thickening, and peak systolic SR were measured before and 24 h after reperfusion. Area at risk (AR) was measured by blue dye and infarct size (area of necrosis, AN) and TEI by triphenyltetrazolium chloride staining. AN increased with ischemia duration (25 +/- 2%, 56 +/- 5%, 71 +/- 6% of AR for 30, 60, and 90 min, respectively; P < 0.05). LV end-diastolic volume significantly increased with ischemia duration (30 +/- 5, 34 +/- 5, 43 +/- 5 microl; P < 0.05), whereas LV ejection fraction decreased (63 +/- 5%, 58 +/- 6%, 46 +/- 5%; P < 0.05). AW thickening decrease was not influenced by ischemia duration. Conversely, systolic SR decreased with ischemia duration (13 +/- 5, 4 +/- 3, -2 +/- 6 s(-1); P < 0.05) and was significantly correlated with TEI (r = 0.89, P < 0.01). Receiver operating characteristic (ROC) curves identified systolic SR as the most accurate parameter to predict TEI. In conclusion, in a murine model of MI, SR imaging is superior to conventional echocardiography to predict TEI early after MI.  相似文献   

12.
Hypoxia has been reported to alter left ventricular (LV) diastolic function, but associated changes in right ventricular (RV) systolic and diastolic function remain incompletely documented. We used echocardiography and tissue Doppler imaging to investigate the effects on RV and LV function of 90 min of hypoxic breathing (fraction of inspired O(2) of 0.12) compared with those of dobutamine to reproduce the same heart rate effects without change in pulmonary vascular tone in 25 healthy volunteers. Hypoxia and dobutamine increased cardiac output and tricuspid regurgitation velocity. Hypoxia and dobutamine increased LV ejection fraction, isovolumic contraction wave velocity (ICV), acceleration (ICA), and systolic ejection wave velocity (S) at the mitral annulus, indicating increased LV systolic function. Dobutamine had similar effects on RV indexes of systolic function. Hypoxia did not change RV area shortening fraction, tricuspid annular plane systolic excursion, ICV, ICA, and S at the tricuspid annulus. Regional longitudinal wall motion analysis revealed that S, systolic strain, and strain rate were not affected by hypoxia and increased by dobutamine on the RV free wall and interventricular septum but increased by both dobutamine and hypoxia on the LV lateral wall. Hypoxia increased the isovolumic relaxation time related to RR interval (IRT/RR) at both annuli, delayed the onset of the E wave at the tricuspid annulus, and decreased the mitral and tricuspid inflow and annuli E/A ratio. We conclude that hypoxia in normal subjects is associated with altered diastolic function of both ventricles, improved LV systolic function, and preserved RV systolic function.  相似文献   

13.

Background

Altered septal curvature and left ventricular (LV) geometry secondary to right ventricular (RV) dilation render two-dimensional assessment of LV mechanics difficult in repaired tetralogy of Fallot (TOF) patients. The novel three-dimensional (3D) speckle tracking echocardiography enables comprehensive evaluation of true 3D LV mechanics.

Methods and Results

Seventy-six patients aged 23.6±8.3 years, 55 with isolated repair (group I) and 21 with subsequent pulmonary valve replacement (group II), and 34 healthy controls were studied. Three-dimensional volume datasets were acquired for assessment of LV global and regional 3D strain, systolic dyssynchrony index (SDI), twist, twist gradient (twist/LV length), and ejection fraction. A global performance index was calculated as (global 3D strain•twist gradient)/SDI. The septal curvature and LV eccentricity were determined from the mid-ventricular short-axis. Compared with controls, group I and II patients had significantly reduced LV global 3D strain, LV twist, twist gradient, septal curvature, and global performance index, and greater LV systolic and diastolic eccentricity and SDI (all p<0.05). All but the four apical LV segments in patients had reduced regional 3D strain compared with controls (all p<0.05). Septal curvature correlated with LV global 3D strain (r = 0.41, p<0.001), average septal strain (r = 0.38, p<0.001), twist (r = 0.32, p<0.001), twist gradient (r = 0.33, p<0.001), and global performance index (r = 0.43, p<0.001).

Conclusions

Adverse 3D LV mechanics as characterized by impaired global and regional 3D systolic strain, mechanical dyssynchrony, and reduced twist is related to reduced septal curvature in repaired TOF patients with and without pulmonary valve replacement.  相似文献   

14.
Cardiac atrophy after bed rest and spaceflight.   总被引:7,自引:0,他引:7  
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.  相似文献   

15.
ObjectiveCoronary slow-flow phenomenon (CSFP) is an angiographic diagnosis characterised by a low rate of flow of contrast agent in the normal or near-normal epicardial coronary arteries. Many of the patients with CSFP may experience recurrent acute coronary syndromes. However, current clinical practice tends to underestimate the impact of CSFP due to the yet unknown effect on the cardiac function. This study was performed to evaluate left ventricular (LV) and right ventricular (RV) diastolic and systolic functions, using two-dimensional (2D) longitudinal strain and strain rate, in patients with CSFP, and to determine the relationships between the thrombolysis in myocardial infarction (TIMI) frame count (TFC) and LV and RV diastolic and systolic functions.MethodsSixty-three patients with CSFP and 45 age- and sex-matched controls without CSFP were enrolled in the study. Diagnosis of CSFP was made by TFC. LV and RV diastolic and systolic functions were assessed by 2D speckle-tracking echocardiography.ResultsLV peak early diastolic longitudinal strain rate (LSRe) was lower in patients with CSFP than in controls (P = 0.01). LV peak systolic longitudinal strain (LS) and LV peak systolic longitudinal strain rate (LSRs) were lower in patients with CSFP than in controls (P = 0.004 and P = 0.03, respectively). There was no difference in LV ejection fraction. RV peak early diastolic longitudinal strain rate (RSRe) was lower in patients with CSFP than in controls (P = 0.03). There were no differences in RV peak systolic longitudinal strain (RS), RV peak systolic longitudinal strain rate (RSRs), or RV fractional area change among the groups. The mean TFC correlated negatively with LSRe and RSRe in patients with CSFP (r = −0.26, P = 0.04 and r = −0.32, P = 0.01, respectively).ConclusionsLV diastolic and systolic functions were impaired in patients with CSFP. CSFP also affected RV diastolic function, but not RV systolic function.  相似文献   

16.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

17.
To better characterize the relationship between left ventricular volume response and improved ventricular ejection and output during supine exercise in normal subjects, 36 healthy asymptomatic volunteers (age 39 +/- 17 yr) were studied with radionuclide ventriculography during recumbent bicycle ergometry. Relative changes in left ventricular end-diastolic and end-systolic volume were measured at rest and during exercise by a modification of the radionuclide counts-based method that accounted for variability in stress blood pool counts. A biphasic response was noted in left ventricular end-diastolic volume with an initial increase in early exercise (8.5 +/- 11% at 200 kpm/min and 11 +/- 12% at 300 kpm/min) followed by a progressive and significant decline at peak exercise (-3.3 +/- 18% at 547 +/- 140 kpm/min; P < 0.05). There was substantial variation in end-diastolic volume response at peak exercise in the group as a whole, which could be more closely related to changes in end-systolic volume (r = 0.84, P < 0.0001) than in heart rate (r = -0.57, P < 0.01) or age (r = 0.36, P < 0.05) of the study subjects. Despite the decline in ventricular filling, systolic function appeared to improve dramatically at peak exercise (change in left ventricular ejection fraction 15.5 +/- 6.4, P < 0.0001). Although not directly related to increasing systolic ejection, end-diastolic volume was directly related to the percent change in stroke volume at peak exercise among the study subjects (r = 0.88, P < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The goal of the present study was to assess the effects of left ventricular (LV) pacing sites (apex vs. free wall) on radial synchrony and global LV performance in a canine model of contraction dyssynchrony. Ultrasound tissue Doppler imaging and hemodynamic (LV pressure-volume) data were collected in seven anesthetized, opened-chest dogs. Right atrial (RA) pacing served as the control, and contraction dyssynchrony was created by simultaneous RA and right ventricular (RV) pacing to induce a left bundle-branch block-like contraction pattern. Cardiac resynchronization therapy (CRT) was implemented by adding simultaneous LV pacing to the RV pacing mode at either the LV apex (CRTa) or free wall (CRTf). A new index of synchrony was developed via pair-wise cross-correlation analysis of tissue Doppler radial strain from six midmyocardial cross-sectional regions, with a value of 15 indicating perfect synchrony. Compared with RA pacing, RV pacing significantly decreased radial synchrony (11.1 +/- 0.8 vs. 4.8 +/- 1.2, P < 0.01) and global LV performance (cardiac output: 2.0 +/- 0.3 vs. 1.4 +/- 0.1 l/min and stroke work: 137 +/- 22 vs. 60 +/- 14 mJ, P < 0.05). Although both CRTa and CRTf significantly improved radial synchrony, only CRTa markedly improved global function (cardiac output: 2.1 +/- 0.2 l/min and stroke work: 113 +/- 13 mJ, P < 0.01 vs. RV pacing). Furthermore, CRTa decreased LV end-systolic volume compared with RV pacing without any change in LV end-systolic pressure, indicating an augmented global LV contractile state. Thus, LV apical pacing appears to be a superior pacing site in the context of CRT. The dissociation between changes in synchrony and global LV performance with CRTf suggests that regional analysis from a single plane may not be sufficient to adequately characterize contraction synchrony.  相似文献   

19.
Prolonged exercise induces left ventricular dysfunction in healthy subjects   总被引:2,自引:0,他引:2  
To determine the effects of a moderately prolonged exercise on left ventricular systolic performance, 23 healthy male subjects, aged 18 to 51 yr (mean 37 yr) were studied. The subjects exercised first on a treadmill (brief exercise) and completed, on a separate day, a 20-km run. M-mode, two-dimensional, and Doppler echocardiography, as well as calibrated carotid pulse tracings, were obtained at rest and immediately on completion of both brief and prolonged exercise. Left ventricular systolic function was assessed by end-systolic stress-shortening relationships. Heart rate increased similarly after brief and prolonged exercise (+30%). Mean arterial pressure decreased from 99 +/- 7 to 92 +/- 8 mmHg (P less than 0.001) after prolonged exercise, but it remained unchanged after brief exercise. Left ventricular end-diastolic volume was decreased after prolonged exercise (130 +/- 23 vs. 147 +/- 18 ml at rest, P less than 0.01). Both ejection fraction and rate-adjusted mean velocity of fiber shortening decreased after prolonged exercise [from 67 +/- 5 to 60 +/- 6% (P less than 0.001) and from 1.12 +/- 0.2 to 0.91 +/- 0.2 cm/s (P less than 0.001), respectively] despite a lower circumferential end-systolic wall stress (133 +/- 23 vs. 152 +/- 20 g/cm2). The relationship between ejection fraction (or mean velocity of fiber shortening adjusted for heart rate) and end-systolic wall stress was displaced downward on race finish (P less than 0.05). These changes were independent of the changes in left ventricular end-diastolic volume and hence those in preload. The data suggest that moderately prolonged exercise may result in depressed left ventricular performance in healthy normal subjects.  相似文献   

20.
Because of its complex geometry, assessment of right ventricular (RV) function is more difficult than it is for the left ventricle (LV). Because gene-targeted mouse models of cardiomyopathy may involve remodeling of the right heart, the purpose of this study was to develop high-resolution functional magnetic resonance imaging (MRI) for in vivo quantification of RV volumes and global function in mice. Thirty-three mice of various age were studied under isoflurane anesthesia by electrocardiogram-triggered cine-MRI at 7 T. MRI revealed close correlations between RV and LV stroke volume and cardiac output (r = 0.97, P < 0.0001 each). Consistent with human physiology, murine RV end-diastolic and end-systolic volumes were significantly higher compared with LV volumes (P < 0.05 each). MRI in mice with LV heart failure due to myocardial infarction revealed significant structural and functional changes of the RV, indicating RV dysfunction. Hence, MRI allows for the quantification of RV volumes and global systolic function with high accuracy and bears the potential to evaluate mechanisms of RV remodeling in mouse models of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号