首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. Adrenaline, acting on alpha-adrenoceptors, and Substance P also stimulated net loss of PtdIns(4,5)P2. The beta-adrenoceptor agonist, isoprenaline, and the Ca2+ ionophore, ionomycin, failed to affect labelled PtdIns(4,5)P2 or PtdIns4P. By chelation of extracellular Ca2+ with excess EGTA, and by an experimental protocol that eliminates cellular Ca2+ release, it was demonstrated that the agonist-induced decrease in PtdIns(4,5)P2 is independent of both Ca2+ influx and Ca2+ release. These results may suggest that net PtdIns(4,5)P2 breakdown is an early event in the stimulus-response pathway of the parotid acinar cell and could be directly involved in the mechanism of agonist-induced Ca2+ release from the plasma membrane.  相似文献   

2.
The hypothesis that arachidonic acid metabolism might be involved in Ca-mobilization mechanisms in exocrine gland cells was investigated. Arachidonate (10−4M) failed to stimulate protein secretion from slices of pancreas, parotid or lacrimal glands and failed to stimulate 86Rb efflux from parotid or lacrimal glands. The stimulation of protein secretion (all three glands) or 86Rb efflux (parotid and lacrimal glands) by appropriate secretagogues was unaffected by 10−5M indomethacin. Eicosatetraynoic acid (2×10−5M) inhibited 86Rb efflux due to carbachol but not that due to physalaemin or ionomycin. Nordihydroguaiaretic acid inhibited lacrimal and parotid gland responses only at high (10−4M) concentration. Collectively, these results argue against an obligatory role for arachidonate metabolites in Ca-mediated responses of these exocrine glands.In the exocrine glands activation by neurotransmitters (or analogs) of receptors that mobilize cellular Ca also stimulates the incorporation of 32PO4 into phosphatidylinositol (1–3). Michell (4,5) has suggested that in some manner this alteration in phospholipid metabolism may be functionally responsible for the opening of surface membrane Ca gates which presumably precedes the expression of a number of Ca-mediated responses by the exocrine cell. That this reaction probably preceeds Ca mobilization is deduced primarily from two experimental observations. First, receptor activation of phosphatidylinositol turnover is not prevented by Ca omission (6–8). Second, the effect is not mimicked by the divalent cationophore A-23187, while other effects of receptor activation are mimicked by this compound (7–9).There has also been some speculation as to the manner in which altered phosphatidylinositol metabolism might be involved in the Ca-gating mechanism (10–14). One such hypothesis suggests that receptor activation may lead to phosphatidylinositol breakdown which in turn leads to the release of free arachidonate (13, 14). As free arachidonate is generally believed to be the rate-limiting substrate for prostaglandin synthesis (15), the resulting prostaglandins might act to mobilize Ca or might act in concert with Ca (13, 14). There is evidence for this hypothesis for the mouse pancreas, where exogenous arachidonate and prostaglandins can stimulate amylase release (13). The effects of arachidonate, carbachol, caerulein and pancreozmin were all antagonized by sub-micromolar concentrations of indomethacin (13), a potent cyclooxygenase inhibitor (15). Additionally, recent reports have demonstrated stimulation by acetylcholine of prostaglandin E synthesis in mouse pancreas (16, 17).The purpose of this study was to examine the general applicability of this hypothesis by investigating the effects of arachidonate and substances that inhibit prostaglandin formation in two other exocrine tissues that show a prominent phosphatidylinositol turnover — the rat parotid and lacrimal glands.  相似文献   

3.
1. Phospholipases have been proposed to play a key role in sperm acrosome reaction. To examine the activation mechanism of phospholipases and subsequently sperm fertilizing capacity. Ca2+ fluxes and phospholipid turnover (breakdown and synthesis) were investigated in golden hamster spermatozoa during acrosome reaction. 2. Upon exposure of the spermatozoa to 1.7 mM Ca2+, a net uptake by the cells occurred in two distinguishable phases. 3. Depletion of extracellular Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) at a time that an initial Ca2+ uptake was observed to reach almost steady-state, prevented the secondary Ca2+ uptake and acrosome reaction. 4. The time course of an initial Ca2+ uptake seemed to precede that of the acrosome reaction. 5. Incubation of the spermatozoa with Ca2+ in the presence of [3H]glycerol induced a rapid increase in labeling of phosphatidic acid, a key intermediate of phosphinositide turnover initiated by the action of phospholipase C, which appeared to parallel the time course of a first phase of Ca2+. 6. Phospholipase A2 activation, detected by lysophospholipid formation, slightly delayed the initial events of first Ca2+ uptake and phosphatidic acid production. 7. It is concluded that first Ca2+ entry into the cells, associated with phosphatidic acid production, activates a phospholipase A2, leading to the production of substances, like lysophospholipids and fatty acids, which may contribute to acrosome reaction.  相似文献   

4.
Human erythroleukaemia (HEL) cells were exposed to thrombin and other platelet-activating stimuli, and changes in radiolabelled phospholipid metabolism were measured. Thrombin caused a transient fall in PtdInsP and PtdInsP2 levels, accompanied by a rise in diacylglycerol and phosphatidic acid, indicative of a classical phospholipase C/diacylglycerol kinase pathway. However, the rise in phosphatidic acid preceded that of diacylglycerol, which is inconsistent with phospholipase C/diacylglycerol kinase being the sole source of phosphatidic acid. In the presence of ethanol, thrombin and other agonists (platelet-activating factor, adrenaline and ADP, as well as fetal-calf serum) stimulated the appearance of phosphatidylethanol, an indicator of phospholipase D activity. The Ca2+ ionophore A23187 and the protein kinase C activator phorbol myristate acetate (PMA) also elicited phosphatidylethanol formation, although A23187 was at least 5-fold more effective than PMA. Phosphatidylethanol production stimulated by agonists or A23187 was Ca2(+)-dependent, whereas that with PMA was not. These result suggest that phosphatidic acid is generated in agonist-stimulated HEL cells by two routes: phospholipase C/diacylglycerol kinase and phospholipase D. Activation of the HEL-cell phospholipase D in response to agonists may be mediated by a rise in intracellular Ca2+.  相似文献   

5.
alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.  相似文献   

6.
Histamine secretion in rat peritoneal mast cells stimulated by nerve growth factor requires a synergistic signal delivered by lysophosphatidylserine. To study the signal-transducing system activated by these compounds, phospholipid metabolism has been investigated in these cells. Phospholipid labeling with 32PO4 reveals a 5-9-fold stimulation of phosphatidic acid, phosphatidylinositol and phosphatidylcholine synthesis. Increased synthesis of phosphatidylinositol is also monitored using [3H]inositol incorporation. When [3H]inositol-labeled mast cells are incubated in the presence of Li+, nerve growth factor and lysophosphatidylserine enhance the accumulation of inositol monophosphate, inositol bisphosphate and inositol trisphosphate. Similar to the induced histamine release, accumulation of inositol phosphates (a) does not occur when the two agonists are added separately; (b) is inhibited when lysophosphatidyl-L-serine is replaced by lysophosphatidyl-D-serine; and (c) is enhanced in the presence of extracellular Ca2+. The data suggest that the interactive stimulus of nerve growth factor and lysophosphatidylserine is transmitted through the polyphosphoinositide-phospholipase C system.  相似文献   

7.
J H Exton 《FASEB journal》1988,2(11):2670-2676
It is now accepted that many hormones and neurotransmitters exert their effects through G protein-mediated activation of a phospholipase C, which breaks down phosphatidylinositol bisphosphate. This releases inositol trisphosphate, which mobilizes intracellular calcium, and diacylglycerol, which, in turn, activates protein kinase C. However, recent evidence indicates that other mechanisms are involved. In some cells, the increases in cytosolic calcium elicited within 1-2 s by high concentrations of agonists or at later times by low, physiological concentrations of agonists occur without any detectable changes in inositol phosphates and calcium mobilization, and result from the opening of plasma membrane channels that are permeable to Ca2+. This response appears to be mediated more directly by G proteins. These findings question the postulated roles of inositol phosphates and calcium mobilization in the stimulation of calcium influx. Measurements of the mass and fatty acid composition of the inositol phospholipids and of the diacylglycerol and phosphatidic acid generated by agonists in several cell types indicate that phosphatidylinositol bisphosphate is probably a minor source of these lipids. On the other hand, measurements of phosphatidylcholine, choline, and phosphocholine indicate that this phospholipid is a major source, and that its breakdown involves both phospholipase C and D. These findings indicate that phosphatidylcholine breakdown may be more important than phosphoinositide hydrolysis in the regulation of protein kinase C and perhaps other cell functions.  相似文献   

8.
Rat granulosa cells isolated from mature Graafian follicles were incubated with luteinizing hormone under various conditions in order to follow the synthesis and degradation of phospholipids. During acute incubations, luteinizing hormone provoked rapid and concentration-dependent increases in the incorporation of 32PO4 into phosphatidic acid, phosphatidylinositol, and the polyphosphoinositides. Similarly, luteinizing hormone provoked increases in labeling of phosphatidylinositol and the polyphosphoinositides when granulosa cells were incubated with myo-[2-3H]inositol. When granulosa cells were prelabeled with 32PO4 in order to label phosphatidylinositol to constant specific radioactivity (4 h), luteinizing hormone treatment significantly increased 32P-phosphatidylinositol levels (23%). Comparable increases (27%) in the cellular concentrations of phosphatidylinositol were observed in response to luteinizing hormone. In pulse-chase experiments employing 32PO4 - or [3H]inositol-prelabeled cells, luteinizing hormone did not alter phospholipid degradation. In addition, luteinizing hormone did not stimulate degradation of polyphosphoinositides. These results demonstrate that: (a) luteinizing hormone has selective effects on phospholipid metabolism in rat granulosa cells which involve phosphatidic acid, phosphatidylinositol, and the polyphosphoinositides, (b) luteinizing hormone increases net levels of phosphatidylinositol and presumably phosphatidic acid and the polyphosphoinositides, and (c) luteinizing hormone does not increase phospholipid degradation. Our findings suggest that luteinizing hormone provokes increases in de novo synthesis of phosphatidylinositol in rat granulosa cells. These changes in phospholipid metabolism may be important for steroidogenesis and other enzymatic processes during treatment with luteinizing hormone.  相似文献   

9.
The metabolism of phosphatidate in rat parotid acinar cells was investigated, particularly with regard to the actions of agonists known to act by mobilizing Ca2+. When cells were incubated in medium containing 10 microM-[32P]Pi, phosphatidate was rapidly labelled, approaching an apparent steady-state with a half-time of approx. 20 min. Methacholine provoked a more than doubling of phosphatidate radioactivity, which was reversed by the muscarinic antagonist atropine. These results suggest that phosphatidate labels to near steady-state rapidly and that in cells prelabelled for 60 min the increase in radioactivity induced by agonists probably reflects net synthesis rather than an increase in specific radioactivity. Phosphatidate synthesis in response to methacholine was rapid and occurred, within the resolution of a few seconds, with no measurable latency. Adrenaline and substance P also stimulated phosphatidate synthesis but both agonists were less efficacious than methacholine. A Ca2+ ionophore, ionomycin, did not provoke phosphatidate synthesis. By using a protocol that eliminates the receptor-regulated Ca2+ pool, it was demonstrated that methacholine-induced phosphatidate formation does not come about as a consequence of Ca2+ influx nor of Ca2+ release. These results indicate that the phosphatidate synthesis response has characteristics compatible with its previously suggested role as a primary mediator of membrane Ca2+-gating.  相似文献   

10.
The activation of beta-adrenergic receptors in rat parotid acinar cells causes intracellular cAMP elevation and appreciably stimulates the exocytotic release of amylase into saliva. The activation of Ca(2+)-mobilizing receptors also induces some exocytosis. We investigated the role of phospholipase D (PLD) in regulated exocytosis in rat parotid acinar cells. A transphosphatidylation assay detected GTPgammaS (a nonhydrolyzable analogue of GTP)-dependent PLD activity in lysates of rat parotid acinar cells, suggesting that PLD is activated by small molecular mass GTP-binding proteins. The PLD inhibitor, neomycin, suppressed cAMP-dependent exocytosis in saponin-permeabilized cells. Signaling downstream of PLD was disrupted by 1-butanol due to conversion of the PLD reaction product (phosphatidic acid) to phosphatidylbutanol. The stimulation of exocytosis by isoproterenol as well as by a Ca(2+)-mobilizing agonist (methacholine) was inhibited by 1-butanol. These results suggest that PLD is important for regulated exocytosis in rat parotid acinar cells.  相似文献   

11.
In astrocyte-enriched cultures of the rat cerebral cortex the Ca2+ ionophore A23187 provoked the breakdown of inositol phospholipids, the liberation of arachidonic acid and the release of prostaglandins E2, F2 alpha, I2 and thromboxane A2. However, agonists for receptors also coupled to inositol phospholipid metabolism in these cells failed to produce an increase in the release of both arachidonic acid and eicosanoids. Results suggest that the A23187-stimulated release of arachidonic acid and eicosanoids is caused by a phospholipase A2-mediated attack on lipids other than the inositol phospholipids. Moreover, receptors linked to inositol lipid turnover are not involved in the control of eicosanoid release from astrocytes.  相似文献   

12.
James W. Putney 《Life sciences》1981,29(12):1183-1194
In 1975, Michell first proposed that activation of phosphatidylinositol turnover provided a direct link between surface receptors and membrane Ca gates. Subsequently, a number of laboratories have begun to re-investigate this phenomenon first described by Hokin and Hokin some twenty years earlier. As would be expected, some new hypothesis have emerged, most being extensions or revisions of Michell's original concept.Despite difficulties in obtaining direct proof, indirect evidence suggests that the plasma membrane is the primary locus of receptor-activated phosphatidylinositol turnover, at least for phosphatidylinositol breakdown and phosphatidic acid synthesis. The presence or absence of Na+ can markedly affect labelling of phosphatidylinositol by radioactive precursors but there is no compelling evidence that the initial events are mediated by Na+. Prostaglandins are apparently formed in some tissues on receptor activation, but in most instances the evidence suggests that these compounds are not obligatory intermediates in tissues that show the phosphatidylinositol effect. Several laboratories have obtained evidence that phosphatidic acid newly synthesized following phosphatidylinositol breakdown, may function as an endogenous Ca ionophore under neurohumoral control.  相似文献   

13.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

14.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

15.
Vasopressin and adrenaline in combination exert synergistic effects on platelet activity. This study investigated the effects of sub-threshold concentrations of adrenaline (0.1-1 microM) on vasopressin (10 nM-1 microM)-induced platelet aggregation, ATP secretion, elevation of cytosolic free Ca2+ concentration ([Ca2+]i) and hydrolysis of inositol phospholipids, monitored as [32P]phosphatidic acid formation. Potentiation of vasopressin-induced aggregation and ATP secretion by adrenaline was accompanied by enhanced elevation of [Ca2+]i and [32P]phosphatidic acid formation. The stimulatory effects of adrenaline on vasopressin-induced platelet activation were mimicked by the combination of the Ca2+ ionophore, ionomycin, and the protein kinase C activator, phorbol 12-myristate 13-acetate, but not by either of these agents alone. These results suggest that the potentiation of vasopressin-induced platelet activation by adrenaline is mediated via enhancement of inositol phospholipid hydrolysis and elevation of [Ca2+]i.  相似文献   

16.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

17.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

18.
We studied the calcium dependency of the stimulation of prostaglandin synthesis which occurs when perfusing strips of guinea pig Taenia coli with potassium-free media. Stimulation was rapidly reversed by removal of extracellular Ca from the bathing solution. The Ca ionophore A23187 markedly stimulated prostaglandin E2 synthesis, an effect that is dependent on the presence of extracellular Ca. Prostaglandin E2 production in strips in potassium-deficient media was also sensitive to increases in extracellular Ca, and was augmented at concentrations of 7-15 mM. In strips which had been incubated with [3H]arachidonic acid, exposure to potassium-free media caused an increased release of [3H]arachidonic acid and [3H]prostaglandin E2. Release of these labeled compounds with the strips in potassium-free media was further augmented by increasing extracellular [Ca2+] from 2.5 to 10 mM. Treatment with the Ca antagonist agent verapamil did not influence activation of prostaglandin synthesis by potassium-deficient media. The presence of Mn2+ of Ba2+ had similar effects on prostaglandin synthesis, although they had opposite effects on mechanical activity. We conclude that a plasma membrane associated Ca pool is involved in activation of phospholipid metabolism which results in release of esterified arachidonic acid and subsequent prostaglandin synthesis. This Ca pool is in rapid equilibrium with extracellular Ca, is not influenced by cytoplasmic Ca, and is not related to Ca involved in Ca gating in the surface membrane. These data also indicate dissociation between processes involved in muscle contraction and activation of prostaglandin synthesis.  相似文献   

19.
Washed human platelets that have been separated from plasma in the presence of prostacyclin are activated by the addition of platelet activating factor (PAF). Activation (shape change, serotonin release, and aggregation) correlates closely with the formation of phosphatidic acid and the phosphorylation of a 40,000-dalton protein. Platelet shape change, formation of phosphatidic acid, and protein phosphorylation precede aggregation and are induced at lower concentrations of PAF than those required to induce release of serotonin and platelet aggregation. Platelet shape change, formation of phosphatidic acid, and protein phosphorylation induced by PAF are not affected by trifluoperazine or indomethacin. This indicates that these responses are independent of the liberation of arachidonic acid from platelet phospholipids and the metabolism of arachidonic acid via cyclooxygenase and lipoxygenase. These responses are, however, inhibited by prostacyclin. Platelet shape change is the first measurable physiologic response to platelet agonists and may be associated with the stimulation of phospholipase C, inducing formation of 1,2-diacylglycerol and its phosphorylated product, phosphatidic acid. Transient formation of 1,2-diacylglycerol may also induce the specific activation of the protein kinase C that phosphorylates a 40,000-dalton protein.  相似文献   

20.
The effects of extracellular ATP on phosphoinositide metabolism and intracellular Ca2+ homeostasis were studied in Ehrlich ascites tumor cells. Cytosolic [Ca2+] was measured using either quin 2 or the recently described indicator fura 2. Addition of 0.5-25 microM extracellular ATP to intact cells results in a rapid mobilization of Ca2+ from a nonmitochondrial, intracellular Ca2+ store. Likewise, direct addition of 0.2-2 microM myo-1,4,5-inositol trisphosphate (IP3) to digitonin-permeabilized Ehrlich cells induces a rapid and reversible release of Ca2+ from a nonmitochondrial pool. Under the same conditions which facilitate intracellular Ca2+ mobilization, extracellular ATP also triggers a rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and accumulation of IP3. A maximal 18% decrease of the polyphosphoinositide is observed 40-60 s after the addition of 25 microM ATP; within 5 min PtdIns(4,5)P2 returns to or exceeds the original, prestimulus level. These conditions also trigger a rapid accumulation of phosphatidic acid (1.7-fold increase within 5 min). Paralleling these ATP-induced changes in phospholipid levels is a substantial accumulation of the mono-, bis-, and trisphosphate derivatives of inositol; most significantly, a 2-fold increase in the IP3 level is observed within 30 s after ATP addition. These results suggest that in these tumor cells, extracellular ATP elicits changes in phosphoinositide metabolism similar to those produced by a wide variety of Ca2+-mobilizing hormones and growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号