首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have shown that phorbol myristate acetate (PMA) enhanced A-23187-induced arachidonate release and thromboxane synthesis in human platelets (Mobley, A., and Tai, H. H. (1985) Biochem. Biophys. Res. Commun. 130, 717-723). The mechanism of enhancement by PMA was not elucidated. In the present study, we have shown that PMA-treated platelets exhibited significantly less [1-14C]arachidonate incorporation than did control platelets. However, no significant change in uptake of labeled linoleate or oleate was observed by PMA treatment. Examination of the two enzyme activities involved in arachidonate incorporation into phospholipids indicated that both arachidonoyl-coenzyme A (CoA) synthase and arachidonoyl-CoA lysophosphatide acyltransferase were inactivated following treatment with PMA or 1-oleoyl-2-acetyl glycerol. When platelets were stimulated with A-23187 plus PMA which produced a significant synergism in thromboxane synthesis, both enzyme activities were substantially less than those in platelets treated with A-23187 alone. In addition to PMA and 1-oleoyl-2-acetyl glycerol induced decreases in both enzyme activities, collagen, a platelet agonist which can activate protein kinase C (Ca2+/phospholipid-dependent enzyme), was also found to cause a concentration-dependent attenuation of both enzyme activities. These results suggest that protein kinase C activation induced by PMA or collagen may cause inactivation of both arachidonoyl-CoA synthase and arachidonoyl-CoA lysophosphatide acyltransferase resulting in inhibition of the reincorporation of arachidonate released by A-23187 and, consequently, greater availability of arachidonate for thromboxane synthesis.  相似文献   

3.
Phorbol myristate acetate augmented the release of 3H-AA and the synthesis of leukotriene B4 and 5-hydroxyeicosatetraenoic acid by human polymorphonuclear leukocytes stimulated by A23187. PMA alone had no effect. Enhancement of the response to A23187 was not seen when the inactive phorbol ester 4-alpha phorbol didecanoate was added with A23187. These data are consistent with the hypothesis that activation of protein kinase C enhances AA release and metabolism in stimulated polymorphonuclear leukocytes.  相似文献   

4.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   

5.
Changes in shape, and aggregation that accompanies platelet activation, are dependent on the assembly and reorganization of the cytoskeleton. To assess the changes in cytoskeleton induced by thrombin and PMA, suspensions of aspirin-treated,32P-prelabeled, washed pig platelets in Hepes buffer containing ADP scavengers were activated with thrombin, and with PMA, an activator of protein kinase C. The cytoskeletal fraction was prepared by adding Triton extraction buffer. The Triton-insoluble (cytoskeletal) fraction isolated by centrifugation was analysed by SDS-PAGE and autoradiography. Incorporation of actin into the Triton-insoluble fraction was used to quantify the formation of F-actin. Thrombin-stimulated platelet cytoskeletal composition was different from PMA-stimulated cytoskeletal composition. Thrombin-stimulated platelets contained not only the three major proteins: actin (43 kDa), myosin (200 kDa) and an actin-binding protein (250 kDa), but three additional proteins of Mr56 kDa, 80 kDa and 85 kDa in the cytoskeleton, which were induced in by thrombin dose-response relationship. In contrast, PMA-stimulated platelets only induced actin assembly, and the 56 kDa, 80 kDa and 85 kDa proteins were not found in the cytoskeletal fraction. Exposure of platelets to thrombin or PMA induced phosphorylation of pleckstrin parallel to actin assembly. Staurosporine, an inhibitor of protein kinase C, inhibited actin assembly and platelet aggregation induced by thrombin or PMA, but did not inhibit the incorporation of 56 kDa, 80 kDa and 85 kDa into the cytoskeletal fraction induced by thrombin. These three extra proteins seem to be unrelated to the induction of protein kinase C. We conclude that actin polymerization and platelet aggregation were induced by a mechanism dependent on protein kinase C, and suggest that thrombin-activated platelets aggregation could involve additional cytoskeletal components (56 kDa, 80 kDa, 85 kDa) of the cytoskeleton, which made stronger actin polymerization and platelet aggregation more.  相似文献   

6.
In washed human platelets and in HL60 granulocytes phorbol myristate acetate (PMA, 1-2000nM) synergised with threshold concentrations of secretogogues to induce a sustained maximum secretory response. Likewise, superoxide production from HL60 cells maintained a maximal response at PMA concentrations between 30-300nM. At concentrations up to 10nM PMA also augmented calcium ionophore, A23187, stimulated histamine release from rat peritoneal mast cells. However, in the mast cell PMA concentrations above 10nM reduced maximum histamine release in a dose-dependent manner.  相似文献   

7.
Although synthetic analogs of alkylglycerol (AG), such as dodecylglycerol, possess potent biological activities, their mechanism of action has not been determined. We recently detected substantial amounts of AG in unstimulated MDCK cells (Warne, T.R. and Robinson, M. (1991) Anal. Biochem. 198, 302–307) raising the possibility mediator. In this study, we examined the effects of synthetic AG on the release of arachidonic acid and arachidonate metabolites (AA) from Madin Darby canine kidney (MDCK) cells in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) in order to characterize its effects on this signalling pathway. Treatment of MDCK with AG potently inhibited the release of AA during subsequent stimulation with TPA. Dodecylglycerol, the most effective of a series of alkylgycerols tested, was active at concentrations as low as 3 μM. The sn-1 and sn-3 forms of AG were found to be equally potent inhibitors. The effects of AG on AA release were not the result of arachidonic acid redistribution among cellular lipids and were independent of the phospholipid source of the released AA. AG did not inhibit the release of AA from MDCK cells when bradykinin was used as a stimulus, indicating selectivity for the effects produced by phorbol esters. These results show that AG can function as a potent and specific inhibitor of TPA-mediated AA release. The ability of AG to regulate this signalling pathway in intact MDCK cells, together with its natural occurrence, suggests a potential bioregulatory role for the endogenous compound as an inhibitor of protein kinase C.  相似文献   

8.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

9.
10.
Human platelets have been shown to contain a Ca++- and CoA-independent transacylase enzyme that catalyzes the transfer of arachidonic acid from phosphatidylcholine (PC) to lysoplasmenylethanolamine. It has been suggested that this route may represent a major source for released arachidonic acid in stimulated platelets. In this study, we have shown using arachidonic-labelled human platelets that the thrombin-induced activation of a transacylase reaction was not affected by concentrations of trifluoperazine (TFP) (15 micrograms/2 X 10(9) cells) which abolished the accumulation of free [3H]arachidonic acid in the presence of the cyclooxygenase/lipoxygenase inhibitor BW755C. TFP, at this concentration failed to block the hydrolysis of phosphatidylcholine (PC) completely and had no effect on the increased radioactivity seen in total phosphatidylethanolamine (PE) (160% of control after 4 min of incubation). These results suggest that the transacylase pathway activated in response to thrombin is not likely dependent on calcium. As TFP blocks effectively both the accumulation of free [3H]arachidonic acid and the mass of arachidonic acid without affecting the transfer of this fatty acid from PC to PE in thrombin-stimulated human platelets, it is very unlikely that the transacylation pathway represents a major source of release arachidonic acid. Based on these findings, we conclude that the above pathway may be primarily involved in the turnover of plasmenylethanolamine lipids in stimulated human platelets.  相似文献   

11.
Arachidonic acid (AA) participates in a reacylation/deacylation cycle of membrane phospholipids, the so-called Lands cycle, that serves to keep the concentration of this free fatty acid in cells at a very low level. To manipulate the intracellular AA level in U937 phagocytes, we have used several pharmacological strategies to interfere with the Lands cycle. We used inhibitors of the AA reacylation pathway, namely thimerosal and triacsin C, which block the conversion of AA into arachidonoyl-CoA, and a CoA-independent transacylase inhibitor that blocks the movement of AA within phospholipids. In addition, we used cells overexpressing group VIA phospholipase A(2), an enzyme with key roles in controlling basal fatty acid deacylation reactions in phagocytic cells. All of these different strategies resulted in the expected increase of cellular free AA but also in the induction of cell death by apoptosis. Moreover, when used in combination with any of the aforementioned drugs, AA itself was able to induce apoptosis at doses as low as 10 muM. Blocking cyclooxygenase or lipoxygenases had no effect on the induction of apoptosis by AA. Collectively, these results indicate that free AA levels within the cells may provide an important cellular signal for the onset of apoptosis and that perturbations of the mechanisms controlling AA reacylation, and hence free AA availability, may decisively affect cell survival.  相似文献   

12.
Intramuscular administration to female rabbits of 2 mg/kg ethinylestradiol every other day for 10 days increased the uptake and incorporation of [14C]arachidonic acid into platelet lipids, and increased the proportion of [14C]arachidonic acid released from platelets after stimulation by thrombin. The conversion of [14C]arachidonic acid to thromboxane B2 did not differ between the control and ethinylestradiol-treated groups. Thus, the results of this study indicate that the major site in the prostaglandin metabolic pathway influenced by estrogen is the incorporation and release of arachidonic acid in platelet phospholipids.  相似文献   

13.
Ca2+ -independent phospholipase A2 (iPLA2) is involved in the incorporation of arachidonic acid (AA) into resting macrophages by the generation of the lysophospholipid acceptor. The role of iPLA2 in AA remodeling in different cells was evaluated by studying the Ca2+ dependency of AA uptake from the medium, the incorporation into cellular phospholipids, and the effect of the iPLA2 inhibitor bromoenol lactone on these events. Uptake and esterification of AA into phospholipids were not affected by Ca2+ depletion in human polymorphonuclear neutrophils and rat fibroblasts. The uptake was Ca2+ independent in chick embryo glial cells, but the incorporation into phospholipids was partially dependent on extracellular Ca2+. Both events were fully dependent on extra and intracellular Ca2+ in human platelets. In human polymorphonuclear neutrophils, the kinetics of incorporation in several isospecies of phospholipids was not affected by the absence of Ca2+ at short times (<30 min). The involvement of iPLA2 in the incorporation of AA from the medium was confirmed by the selective inhibition of this enzyme with bromoenol lactone, which reduced < or =50% of the incorporation of AA into phospholipids of human neutrophils. These data provide evidence that suggests iPLA2 plays a major role in regulating AA turnover in different cell types.  相似文献   

14.
The polyamines putrescine, spermidine and spermine, at concentrations of 10 microM, stimulated superoxide generation by human polymorphonuclear leukocytes induced by fMet-Leu-Phe in the presence of Ca2+. This positive effect was not evident in the absence of Ca2+ or when the polymorphonuclear leukocytes were stimulated by phorbol myristate acetate. Spermidine in the range of 10-100 microM showed a dose-dependent stimulatory effect on the superoxide generation induced by fMet-Leu-Phe, whilst at doses above 25 mM it produced an inhibitory effect. At this concentration, spermidine did not reduce the phorbol myristate acetate-neutrophil-induced O2-. generation, while an inhibitory effect by the polyamine was evident at concentrations above 50 mM. In addition, 100 microM spermidine increased the amount of superoxide generated and enhanced the ability of the chemotactic peptide to stimulate superoxide generation. The polyamines in the range of 10 microM-25 mM did not modify the activity of purified NADPH oxidase, nor the rate of reduction of cytochrome c as supported by the xanthine/xanthine oxidase reaction. These results indicate that physiological concentrations of polyamines can stimulate superoxide formation by polymorphonuclear leukocyte cells produced by the chemotactic peptide fMet-Leu-Phe, probably by increasing the availability of external calcium.  相似文献   

15.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

16.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

17.
18.
A specific surface receptor for urokinase plasminogen activator (uPA) recognizes the amino-terminal growth factor-like sequence of uPA, a region independent from and not required for the catalytic activity of this enzyme. The properties of the uPA receptor (uPAR) and the localization and distribution of uPA in tumor cells and tissues suggest that the uPA/uPAR interaction may be important in regulating extracellular proteolysis-dependent processes (e.g., invasion, tissue destruction). Phorbol myristate acetate (PMA), an inducer of U937 cell differentiation to macrophage-like cells, elicits a time- and concentration-dependent increase in the number of uPAR molecules as shown by binding, cross-linking, and immunoprecipitation studies. The effect of PMA is blocked by cycloheximide. Overall, the data indicate that PMA increases the synthesis of uPA. PMA treatment also causes a decrease in the affinity of the uPAR for uPA, thus uncovering another way of regulating the interaction between uPA and uPAR. In addition, the PMA treatment causes a modification of migration of the cross-linked receptor in mono- and bidimensional gel electrophoresis.  相似文献   

19.
20.
Treatment of human embryonic lung cells with dexamethasone resulted in a decrease in plasminogen activator activity measured in the fibrinolytic assay. The decrease in activity could at least partially be explained by the presence of an inhibitory substance(s) based on the following observations of lysates of dexamethasone-treated vs. control cells: a) an increase in specific activity following subcellular fractionation; b) an increase in fibrinolytic activity following separation by gel electrophoresis; c) an increase in fibrinolytic activity following mild acid-treatment; and d) a decrease in urokinase-directed fibrinolytic activity in mixing experiments. Phorbol myristate acetate increased plasminogen activator activity without affecting the level of inhibitory substance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号