首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.  相似文献   

2.
We describe the presence of alpha-tubulin and MAP2 acetyltransferase activities in mouse brain. The enzyme(s) copurified with microtubules through two cycles of assembly-disassembly. Incubation of microtubule proteins with [3H]acetyl CoA resulted in a strong labeling of both alpha-tubulin and MAP2. To determine the site of the modification, tubulin was purified and digested with Glu-C endoproteinase. A unique radioactive peptide was detected and purified by HPLC. Edman degradation sequencing showed that this peptide contained epsilon N-acetyllysine at position 40 of the alpha-tubulin molecule. This result demonstrates that mouse brain alpha-tubulin was acetylated at the same site as in Chlamydomonas. Isoelectric focusing analysis showed that acetylated alpha-tubulin was resolved into five isoelectric variants, denoted alpha 3 and alpha 5 to alpha 8. This heterogeneity is not due to acetylation of other sites but results from a single acetylation of Lys40 of an heterogeneous population of alpha-tubulin isoforms. These isoforms are produced by posttranslational addition of one to five glutamyl units. Thus, neuronal alpha-tubulin is extensively modified by a combination of modifications including acetylation, glutamylation, tyrosylation, and other yet unknown modifications.  相似文献   

3.
Protein phosphatase C was purified 140-fold from bovine brain with 8% yield using histone H1 phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase (cyclic AMP-kinase). Brain protein phosphatase C was considered to consist of 10 and 90%, respectively, of the catalytic subunits of protein phosphatases 1 and 2A on the basis of the effects of ATP and inhibitor-2. Protein phosphatase C dephosphorylated microtubule-associated protein 2 (MAP2), tau factor, and tubulin phosphorylated by a multifunctional Ca2+/calmodulin-dependent protein kinase (calmodulin-kinase) and the catalytic subunit of cyclic AMP-kinase. The properties of dephosphorylation of MAP2, tau factor, and tubulin were compared. The Km values were in the ranges of 1.6-2.7 microM for MAP2 and tau factor. The Km value for tubulin decreased from 25 to 10-12.5 microM in the presence of 1.0 mM Mn2+. No difference in kinetic properties of dephosphorylation was observed between the substrates phosphorylated by the two kinases. Protein phosphatase C did not dephosphorylate the native tubulin, but universally dephosphorylated tubulin phosphorylated by the two kinases. The holoenzyme of protein phosphatase 2A from porcine brain could also dephosphorylate MAP2, tau factor, and tubulin phosphorylated by the two kinases. The phosphorylation of MAP2 and tau factor by calmodulin-kinase separately induced the inhibition of microtubule assembly, and the dephosphorylation by protein phosphatase C removed its inhibitory effect. These data suggest that brain protein phosphatases 1 and 2A are involved in the switch-off mechanism of both Ca2+/calmodulin-dependent and cyclic AMP-dependent regulation of microtubule formation.  相似文献   

4.
A microtubule-associated protein (MAP) with a molecular mass of 72-kDa that was purified from porcine brain by using its property of heat stability in a low pH buffer was characterized. Low-angle rotary shadowing revealed that the 72-kDa protein was a rodlike protein approximately 55-75 nm long. The 72-kDa protein bound to microtubules polymerized from phosphocellulose column-purified tubulin (PC-tubulin) with taxol and promoted the polymerization of PC-tubulin in the absence of taxol. Microtubules polymerized by the 72-kDa protein showed a tendency to form bundles of several microtubules. Quick-freeze, deep-etch electron microscopy revealed that the 72-kDa protein formed short crossbridges between microtubules. We performed peptide mapping to analyze the relationship of the 72-kDa protein to other heat-stable MAPs, and the results showed some resemblance of the 72-kDa protein to MAP2. Cross-reactivity with a monoclonal anti-MAP2 antibody further suggested that the 72-kDa protein and MAP2 are immunologically related. To study the relationship between the 72-kDa protein and MAP2C, a smaller molecular form of MAP2 identified in juvenile rat brain, we prepared the 72-kDa protein from rat brain by the same method as that used for porcine brain. The fact that the 72-kDa protein from juvenile rat brain was also stained with our monoclonal anti-MAP2 antibody also suggested that the 72-kDa protein is an MAP2C homologue of the porcine brain.  相似文献   

5.
The concentration of estramustine phosphate required to inhibit the assembly or to induce the disassembly of chick brain MAP2:tubulin microtubules is markedly dependent upon the microtubule protein concentration. Analysis of this relationship shows that estramustine phosphate and tubulin compete for common MAP2 sites, that MAP2 can bind 5-6 moles.mole-1 estramustine phosphate, and that the Kd of these sites is congruent to 20 microM estramustine phosphate. It is proposed that two molecules of estramustine phosphate interact with each of the three tubulin-binding sites of MAP2 and inhibit the MAP2:tubulin interaction by neutralising two highly conserved basic residues.  相似文献   

6.
Abstract: The proteins of membrane and cytosol fractions from frozen human postmortem brain were analyzed by two-dimensional gel electrophoresis (isoelectric range: 5.1–6.0) and both Coomassie-blue and ammoniacal silver staining. Cytosol preparations were analyzed from six different postmortem brains from patients with various neurologic diagnoses and immediate causes of death. Intervals between death and brain freezing (−70oC) ranged from 2 to 20 h. The vast majority of proteins detected in these cytosol fractions had identical molecular weights and isoelectric points in each of six human brains examined. However, in some tissue samples tubulin was either quantitatively decreased or undetectable. The possibility that this partial or complete depletion of tubulin was related to postmortem interval and/or brain freezing was studied using rat forebrain tissue. Rat brain incubated at room temperature for up to 24 h did not reproduce the changes seen in the region of human cytosol tubulin. However, other changes seen in the two-dimensional electrophoretic pattern of rat cytosol proteins did relate to postmortem interval, brain freezing, or both. Rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum were prepared from three human brains, with highly reproducible two-dimensional patterns. Protein analysis of these membrane fractions revealed that human RER contained significant amounts of tubulin, in contrast to rat RER which contained no detectable tubulin. This discrepancy was elucidated by allowing rat brains to remain at room temperature for 24 h before freezing; gels of rat RER prepared from this tissue showed that tubulin subunits were present.  相似文献   

7.
《The Journal of cell biology》1983,97(4):1020-1028
Microtubule-associated proteins (MAP) have been identified in cultures of rat sympathetic neurons. In all of the experiments performed here, the cultures consisted of greater than 97% neurons. 26 proteins were identified in these neuronal cultures that (a) remained associated with cytoskeletons prepared with a Triton X-100-containing microtubule- stabilizing buffer, (b) were released from such cytoskeletons by incubation in microtubule-depolymerizing buffers, (c) were not detected in cytoskeletons prepared from cultures depleted of microtubules by treatment with podophyllotoxin, and (d) co-cycled with rat brain microtubule proteins. We conclude that these 26 proteins are associated with microtubules in sympathetic neurons. Two of these proteins have molecular weights of approximately 30,000 and isoelectric points of approximately 6.2; the rest of the proteins range in molecular weight from 60,000 to 76,000 and isoelectric point from 6.3 to 6.9. This latter group of MAPs was heat labile. Several other proteins in the neuronal cultures had the solubility properties and drug-lability expected of MAP. All of these proteins had apparent molecular weights greater than 200,000; one of these putative MAP co-migrated with rat brain MAP-1. We did not detect any putative MAP in these cultures that co-migrated with rat brain MAP-2. In isoelectric focusing-SDS PAGE, the 24 MAP with molecular weights of 60,000-76,000 appeared to comprise four distinct molecular weight classes. Each molecular weight class was in turn composed of several proteins that varied in isoelectric point. In peptide mapping experiments, the isoelectric variants of each molecular weight class gave rise to very similar peptide maps. These observations suggest that each molecular weight class consists of several closely related proteins. It was also determined that all except the most basic member of the four MAP classes could be phosphorylated in vivo, raising the possibility that differential phosphorylation contributed to the variation in the isoelectric points of the members of each MAP class. We performed pulse-chase experiments to further evaluate the contribution of posttranslational modification to the generation of the complex population of MAP in the molecular weight range of 60,000 to 76,000. In cultures labeled for 20 min, only the more basic members of each MAP class were detectably labeled, while in cultures labeled for 20 min and then chased for 220 min the more acidic members of the MAP classes became labeled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Microtubules are complex structures arising in part from the polymerization of tubulin dimers. Tubulin binds to a wide range of drugs which have been used as probes for tubulin conformation and assembly properties. There is some evidence that taxol and taxotere have differing effects on tubulin conformation. Previous work has shown that MAP2 and Tau, although they both induce microtubule assembly, have qualitatively different effects on tubulin's behavior. Since most microtubulesin vivo are likely to be associated with MAPs, we decided to characterize the differential effects of MAP2, Tau, taxol, and taxotere on tubulin polymerization with the aim of understanding the mechanisms through which these agents stimulate microtubule assembly. Furthermore, the inhibitive effect of calcium has been used to elucidate the ability of the two drugs to force tubulin assembly. These observations suggest that docetaxel, in addition to its greater efficiency in tubulin assembly, may have the capacity to differently alter certain classes of microtubules. Tau and MAP2 accessory proteins may represent important cofactors modulating the effects of taxoids.  相似文献   

9.
Microtubule-associated protein (MAP) 2 was purified from the microtubule fraction of mouse brain by heat treatment and BioGel A-5m gel filtration. The purified preparation showed a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis using both a gradient gel (3.75-12.5%) and a low-percentage gel (5%), a finding indicating that MAP2B was absent under the conditions used. Amino acid analysis revealed that mouse MAP2 was an acidic protein with an isoelectric point (pI 4.5) and amino acid composition similar to those of porcine brain MAP2. Immunoblot analysis indicated that the antigens that reacted with MAP2 antiserum were present in large quantities in mouse brain. However, we also found a weak reaction in various tissues other than brain, and the major antigens involved were recognized to be common molecular species with the same molecular mass, 162 and 170 kilodaltons. Using antiserum against mouse brain MAP2, the developmental localization patterns of MAP2 in the mouse cerebellar cortex were studied by immunohistochemistry. MAP2 was mainly localized in the neuronal cells throughout development, with the expression in Purkinje cell dendrites being especially remarkable in the growth of arborization from postnatal day 3 to day 20. At the mature stage, the reaction was strong in the dendritic tree but very weak in the proximal dendrites and cell bodies.  相似文献   

10.
MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.  相似文献   

11.
1. Endogenous phosphate acceptor proteins by cytosolic protein-tyrosine kinase from porcine spleen (CPTK-40) were studied using subcellular fractions of porcine spleen and supernatant fraction of rat various tissues. 2. At least 13 phosphate acceptor proteins ranging from 94 to 26 kDa were observed in all but mitochondrial subcellular fractions. 3. Among the supernatant fraction of rat tissues, brain, testis and spleen contained many phosphate acceptor proteins. 4. The most heavily phosphorylated band of around 55 kDa which was commonly recognized among various tissues was confirmed as tubulin by the immunoreactivity with anti-tubulin antibody. 5. The results obtained in this paper indicate that CPTK-40 has the potential to catalyze the phosphorylation of numerous endogenous proteins including tubulin.  相似文献   

12.
1. Tubulins purified from the brain tissues of three Antarctic fishes (Notothenia gibberifrons, Notothenia coriiceps neglecta, and Chaenocephalus aceratus) contain equimolar quantities of the alpha and beta chains and are free of microtubule-associated proteins (MAPs) and other non-tubulin proteins. 2. When examined by isoelectric focusing and by two-dimensional electrophoresis, brain tubulins from the Antarctic fishes were found to be highly heterogeneous; each was resolved into 15-20 distinct variants. The range of isoelectric points displayed by the Antarctic fish tubulins (5.30-5.75) is slightly more basic than that of bovine brain tubulin (5.25-5.60). 3. Peptide mapping demonstrated that tubulins from the Antarctic fishes and the cow differ in structure. 4. The amino acid compositions of piscine and mammalian tubulins are similar, but the Antarctic fish tubulins apparently contain fewer glutamyl and/or glutaminyl residues than do tubulins from the temperate channel catfish (Ictalurus punctatus) and the cow. 5. Native tubulin from N. coriiceps neglecta possesses 1-2 fewer net negative charges per tubulin dimer than does bovine tubulin. 6. We suggest that the enhanced assembly of Antarctic fish tubulins at low temperatures (-2 to +2 degrees C) results from adaptive, perhaps subtle, changes in their tubulin subunits.  相似文献   

13.
Several aprotic polar solvents were shown to induce mitotic aneuploidy in yeast: diethyl ketone, γ-valerolactone, pyridine, pivalinic acid nitrile, phenylacetonitrile and fumaric acid dinitrile. Only fumaric acid dinitrile also strongly induced other types of genetic effects including mitotic crossing-over, mitotic gene conversion and point mutation. The other substances only induced aneuploidy and this only over a very narrow dose range.

The treatment protocol used suggested that these chemicals acted via interference with tubulin assembly and disassembly causing a malfunctioning of spindle fiber microtubules. This hypothesis was tested using twice recycled porcine brain tubulin. Diethyl ketone, γ-valerolactone, pyridine and phenylacetonitrile inhibited GTP-promoted assembly of porcine brain tubulin in vitro in the concentration range needed for the induction of mitotic aneuploidy in yeast. Pivalinic acid nitrile accelerated tubulin aggregation whereas fumaric acid dinitrile had no effect even at concentrations 18 times higher than the lowest tested concentration effective in yeast.

The in vitro experiments with porcine brain tubulin further suggest that genetic change can result from interference with specific protein-protein interactions. Fumaric acid dinitrile was the only exception since it did induce aneuploidy but had no effects on the assembly of porcine brain tubulin. This could be caused either by interference with protein-protein interactions other than between molecules during assembly and disassembly of microtubules or species-specific differences in susceptibility between yeast spindle and porcine brain tubulin.  相似文献   


14.
To see a molecular basis of the difference in the microtubule binding between MAP2 and MAP4, we compared the binding of them onto microtubule and Zinc-sheet in the presence of various concentrations of NaCl. The Zinc-sheet is the lateral association of protofilaments arranged in an antiparallel fashion with alternatively exposed opposite surfaces, so that binding requiring adjacent protofilaments is restricted. While the salt-dependence of the MAP2 desorption was not altered between these tubulin polymers, MAP4 dissociated from Zinc-sheet at lower concentrations of NaCl than from microtubule. These results suggest that single protofilament is sufficient for microtubule binding of MAP2 as observed by Al-Bassam et al. [J. Cell Biol. 157 (2002) 1187], but MAP4 appeared to interact with adjacent protofilaments during microtubule-binding. Weakened binding on Zinc-sheets was also observed in the projection domain-deletion mutants of MAP4, so that the difference in the protofilament-dependence would lie in the relatively conserved microtubule-binding domain.  相似文献   

15.
Vesikin, a protein that can associate with squid axoplasmic vesicles or optic lobe microtubules, has been implicated as a force-generating molecule involved in microtubule-dependent vesicle transport [Gilbert and Sloboda, 1986, 1988]. Because vesikin crossreacts with an antibody to porcine brain microtubule associated protein 2 (MAP 2), studies were conducted to compare squid vesikin and brain MAPs. When taxol stabilized microtubules containing vesikin as a microtubule associated protein were incubated in the presence of ATP, vesikin dissociated from the microtubule subunit lattice. This behavior would be expected for an ATP-dependent, force generating molecule that serves as a crossbridge between vesicles and microtubules. When chick brain microtubules were treated under the same conditions, MAP 2 remained bound to the microtubules while MAP 1 dissociated in a manner similar to vesikin. One dimensional peptide mapping procedures revealed that, although digestion of vesikin and MAP 2 generated several peptides common to both proteins, vesikin and MAP 2 are clearly not identical. Furthermore, the addition of vesikin or MAPS 1 and 2 to purified tubulin stimulated microtubule assembly in a manner dependent on the concentration of added protein. These findings demonstrate that brain MAPs share characteristics common to squid vesikin and support the suggestion that brain MAPs 1 and 2 might act as a force generating complex for vesicle transport in higher organisms.  相似文献   

16.
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

17.
HURP is a newly discovered microtubule-associated protein (MAP) required for correct spindle formation both in vitro and in vivo. HURP protein is highly charged with few predicted secondary and tertiary folding domains. Here we explore the effect of HURP on pure tubulin, and describe its ability to induce a new conformation of tubulin sheets that wrap around the ends of intact microtubules, thereby forming two concentric tubes. The inner tube is a normal microtubule, while the outer one is a sheet composed of tubulin protofilaments that wind around the inner tube with a 42.5° inclination. We used cryo-electron microscopy and unidirectional surface shadowing to elucidate the structure and conformation of HURP-induced tubulin sheets and their interaction with the inner microtubule. These studies clarified that HURP-induced sheets are composed of anti-parallel protofilaments exhibiting P2 symmetry. HURP is a unique MAP that not only stabilizes and bundles microtubules, but also polymerizes free tubulin into a new configuration.  相似文献   

18.
《朊病毒》2013,7(4):334-338
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

19.
A mitochondrial fraction, purified from pig brain, was found to contain associated polypeptides with the same electrophoretic migration and isoelectric points as the alpha- and beta-tubulin subunits present in brain microtubules. When analyzed by Western blotting these polypeptides reacted specifically with purified tubulin antibodies. The tubulin-like proteins were then visualized in mitochondrial membranes by protein A-gold complexes after the incubation of purified mitochondria with tubulin antibodies. When membrane and microtubule proteins were compared by isoelectric focussing and two-dimensional gel electrophoresis, differences were observed in the patterns of tubulin isoforms. An additional polypeptide, with the electrophoretic migration of beta-tubulin but the isoelectric point of alpha-tubulin, was found to be enriched in the mitochondrial fraction. This peptide had several Staphylococcus aureus V8 protease peptides in common with alpha-tubulin and may result from a posttranslational modification of that subunit.  相似文献   

20.
MAP2 competes with MAP1 for binding to microtubules   总被引:2,自引:0,他引:2  
A question whether MAP1 and MAP2 (the major microtubule associated proteins from mammalian brain) bind to common or distinct sites on the microtubule surface was studied. Microtubules were assembled from tubulin and MAP1 and then centrifuged through a layer of MAP2 solution under conditions where no repolymerization of tubulin with MAP2 could occur. During centrifugation, MAP2 displaced most of MAP1 on the microtubules. This implies that MAP1 is reversibly bound to microtubules and that MAP2 binding interferes with MAP1 binding. The latter means that binding sites for MAP1 and MAP2 are identical or overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号