首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refolding kinetics of the 140-residue, all beta-sheet, human fibroblast growth factor (hFGF-1) is studied using a variety of biophysical techniques such as stopped-flow fluorescence, stopped-flow circular dichroism, and quenched-flow hydrogen exchange in conjunction with multidimensional NMR spectroscopy. Urea-induced unfolding of hFGF-1 under equilibrium conditions reveals that the protein folds via a two-state (native <--> unfolded) mechanism without the accumulation of stable intermediates. However, measurement of the unfolding and refolding rates in various concentrations of urea shows that the refolding of hFGF-1 proceeds through accumulation of kinetic intermediates. Results of the quenched-flow hydrogen exchange experiments reveal that the hydrogen bonds linking the N- and C-terminal ends are the first to form during the refolding of hFGF-1. The basic beta-trefoil framework is provided by the simultaneous formation of beta-strands I, IV, IX, and X. The other beta-strands comprising the beta-barrel structure of hFGF-1 are formed relatively slowly with time constants ranging from 4 to 13 s.  相似文献   

2.
3.
The refolding of barstar from its urea-unfolded state has been studied extensively using various spectroscopic probes and real-time NMR, which provide global and residue-specific information, respectively, about the folding process. Here, a preliminary structural characterization by NMR of barstar in 8 M urea has been carried out at pH 6.5 and 25 degrees C. Complete backbone resonance assignments of the urea-unfolded protein were obtained using the recently developed three-dimensional NMR techniques of HNN and HN(C)N. The conformational propensities of the polypeptide backbone in the presence of 8 M urea have been estimated by examining deviations of secondary chemical shifts from random coil values. For some residues that belong to helices in native barstar, 13C(alpha) and 13CO secondary shifts show positive deviations in the urea-unfolded state, indicating that these residues have propensities toward helical conformations. These residues are, however, juxtaposed by residues that display negative deviations indicative of propensities toward extended conformations. Thus, segments that are helical in native barstar are unlikely to preferentially populate the helical conformation in the unfolded state. Similarly, residues belonging to beta-strands 1 and 2 of native barstar do not appear to show any conformational preferences in the unfolded state. On the other hand, residues belonging to the beta-strand 3 segment show weak nonnative helical conformational preferences in the unfolded state, indicating that this segment may possess a weak preference for populating a helical conformation in the unfolded state.  相似文献   

4.
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.  相似文献   

5.
A general approach for refolding recombinant proteins from inclusion bodies (IBs) is to screen conditions, that facilitate a conversion of unfolded to folded structure and minimize a conversion of unfolded to misfolded and aggregated structures. In this simplified model, such conditions may be those that stabilize the native protein and/or reduce aggregation. In this paper, a novel screening approach, termed reverse screening, was developed using a native activin. Activin-A, a member of transforming growth factor beta superfamily, is a homodimeric protein with nine disulfide bonds. We examined partial unfolding process of native activin-A dissolved in a buffer containing moderate concentrations of denaturant and reducing reagent (i.e., 1.5 M urea and 0.2 mM dithiothreitol). The recovery of the protein was followed by reverse-phase high performance chromatography analysis. Without additives, activin-A showed about 60% loss of the protein due to aggregation after 12-h incubation in the above condition. We then tested various additives for their effects on the recovery after partial unfolding. One of these additives, sodium taurodeoxycholate (TDCA), greatly increased recovery and suppressed aggregation of the protein. These additives were then tested for refolding activin-A from IBs. TDCA among others is proved to be a highly effective refolding additive. These results strongly suggest that reverse screening using native proteins, if available, may be another approach to discovering effective refolding additives.  相似文献   

6.
L F McCoy  E S Rowe  K P Wong 《Biochemistry》1980,19(21):4738-4743
The kinetics of unfolding and refolding of bovine carbonic anhydrase B by guanidinium chloride have been studied by simultaneously monitoring several spectroscopic parameters, each of which reflects certain unique conformational features of the protein molecule. In the present report, far-UV circular dichroism (CD) was used to follow the secondary structural change, UV difference absorption was used to follow the exposure or burying of aromatic amino acid residues, and near-UV CD was used to follow tertiary structural changes during unfolding and refolding. The unfolding is described by two unimolecular rate processes, and refolding is described by three unimolecular rate processes. The minimum number of conformational species involved in the mechanism is five. The refolding of the protein followed by the above three parameters indicates that the process consists of an initial rapid phase in which the random-coiled protein is converted to an intermediate state(s) having secondary structure comparable to that of the native protein. This is followed by the burying of the aromatic amino acid residues to form the interior of the protein molecule. Subsequently, the protein molecule acquires its tertiary structure and folds into a unique conformation with the formation of aromatic clusters.  相似文献   

7.
We examine sequence-to-structure specificity of beta-structural fragments of immunoglobulin domains. The structure specificity of separate chain fragments is estimated by computing the Z-score values in recognition of the native structure in gapless threading tests. To improve the accuracy of our calculations we use energy averaging over diverse homologs of immunoglobulin domains. We show that the interactions between residues of beta-structure are more determinant in recognition of the native structure than the interactions within the whole chain molecule. This result distinguishes immunoglobulins from more typical proteins where the interactions between residues of the whole chain normally recognize the native fold more accurately than interactions between the residues of the secondary structure residues alone [Reva,B. and Topiol,S. (2000) BIOCOMPUTING: Proceedings of the Pacific Symposium. World Scientific Publishing Co., pp. 168-178]. We also find that the predominant contributions of the secondary structure are produced by the four central beta-strands that form the core of the molecule. The results of this study allow us through quantitative means to understand the architecture of immunoglobulin molecules. Comparing the fold recognition data for different chain fragments one can say that beta-strands form a rigid frame for immunoglobulin molecules, whereas loops, with no structural role, can develop a broad variety of binding specificities. It is well known that protein function is determined by specific portions of a protein chain. This study suggests that the whole protein structure can be predominantly determined by a few fragments of chain which form the structural framework of the molecule. This idea may help in better understanding the mechanisms of protein evolution: strengthening a protein structure in the key framework-forming regions allows mutations and flexibility in other chain regions.  相似文献   

8.
Conformational features of reduced and disulfide intact hen egg white lysozyme in aqueous 1,4-dioxane and 3-chloro-1, 2-propanediol solutions have been examined using circular dichroism and fluorescence spectroscopy. We find that in presence of 1, 4-dioxane, reduced lysozyme assumes a relatively compact conformational form with secondary structure closer to native state and no tertiary structure as judged by peptide and aromatic CD spectra and ANS binding studies monitored by fluorescence. Further, in presence of 40% (v/v) 3-chloro-1, 2-propanediol, disulfide intact lysozyme (DI-lysozyme) assumes a conformational form with native like secondary structure and no tertiary structure akin to a molten globule state. We correlate our results to kinetic hydrogen- deuterium exchange NMR results of the refolding of lysozyme available in literature and suggest that the conformational forms observed in our study could be models for kinetic intermediates in the refolding of lysozyme.  相似文献   

9.
Recent H-D exchange 1H NMR studies of the refolding of Staphylococcal nuclease (P117G) variant suggest that, a region of the protein corresponding to a beta hairpin in the native structure folded early in the refolding process. In order to investigate whether the formation of beta hairpin is an early folding event, we investigated the conformational features of the beta hairpin peptide model Ac-DTVKLMYKGQPMTFR-NH2 from Staphylococcal nuclease with 1H NMR techniques. It appears that the peptide aggregates even at a low concentration. However, based on the observation of weak dnn(i, i + 1) NOEs between K8-G9, G9-Q10, an upfield shift of Gly9 NH and a low temperature coefficient (-d delta/dT) for Gly9 NH, we suggest that the sequence YKGQP as part of the beta hairpin peptide model samples conformational forms with reduced conformational entropy and turn potential. The presence of aggregation could be restricting the population of folded conformational forms and formation of beta hairpin at detectable concentrations. We suggest that, formation of beta hairpin could be an early event in the folding of Staphylococcal nuclease and this observation correlates with H-D exchange 1H NMR results and also with the prediction of a protein folding model proposed in literature.  相似文献   

10.
A single water molecule (w135), buried within the structure of rat intestinal fatty acid binding protein (I-FABP), is investigated by NMR, molecular dynamics simulations, and analysis of known crystal structures. An ordered water molecule was found in structurally analogous position in 24 crystal structures of nine different members of the family of fatty acid binding proteins. There is a remarkable conservation of the local structure near the w135 binding site among different proteins from this family. NMR cross-relaxation measurements imply that w135 is present in the I-FABP:ANS (1-sulfonato-8-(1')anilinonaphthalene) complex in solution with the residence time of >300 ps. Mean-square positional fluctuations of w135 oxygen observed in MD simulations (0.18 and 0.13 A2) are comparable in magnitude to fluctuations exhibited by the backbone atoms and result from highly constrained binding pocket as revealed by Voronoi volumes (averages of 27.0 +/- 1.8 A3 and 24.7 +/- 2.2 A3 for the two simulations). Escape of w135 from its binding pocket was observed only in one MD simulation. The escape process was initiated by interactions with external water molecules and was accompanied by large deformations in beta-strands D and E. Immediately before the release, w135 assumed three distinct states that differ in hydrogen bonding topology and persisted for about 15 ps each. Computer simulations suggest that escape of w135 from the I-FABP matrix is primarily determined by conformational fluctuations of the protein backbone and interactions with external water molecules.  相似文献   

11.
The structure and dynamics of equilibrium intermediate in the unfolding pathway of the human acidic fibroblast growth factor (hFGF-1) are investigated using a variety of biophysical techniques including multidimensional NMR spectroscopy. Guanidinium hydrochloride (GdnHCl)-induced unfolding of hFGF-1 proceeds with the accumulation of a stable intermediate state. The transition from the intermediate state to the unfolded state(s) is cooperative without the accumulation of additional intermediate(s). The intermediate state induced maximally in 0.96 m GdnHCl is found to be obligatory in the folding/unfolding pathway of hFGF-1. Most of the native tertiary structure interactions are preserved in the intermediate state. (1)H-(15)N chemical shift perturbation data suggest that the residues in the C-terminal segment including those located in the beta-strands IX, X, and XI undergo the most discernible structural change(s) in the intermediate state in 0.96 m GdnHCl. hFGF-1 in the intermediate state (0.96 m GdnHCl) does not bind to its ligand, sucrose octasulfate. Limited proteolytic digestion experiments and hydrogen-deuterium exchange monitored by (15)N heteronuclear single quantum coherence (HSQC) spectra show that the conformational flexibility of the protein in the intermediate state is significantly higher than in the native conformation. (15)N spin relaxation experiments show that many residues located in beta-strands IX, X, and XI exhibit conformational motions in the micro- to millisecond time scale. Analysis of (15)N relaxation data in conjunction with the amide proton exchange kinetics suggests that residues in the beta-strands II, VIII, and XII possibly constitute the stability core of the protein in the near-native intermediate state.  相似文献   

12.
Simulated refolding of stretched titin immunoglobulin domains   总被引:2,自引:0,他引:2       下载免费PDF全文
Gao M  Lu H  Schulten K 《Biophysical journal》2001,81(4):2268-2277
Steered molecular dynamics (SMD) is used to investigate forced unfolding and spontaneous refolding of immunoglobulin I27, a domain of the muscle protein titin. Previous SMD simulations revealed the events leading to stretch-induced unfolding of I27, the rupture of hydrogen bonds bridging beta-strands A and B, and those bridging beta-strands A' and G, the latter rupture occurring at an extension of approximately 15 A and preceding the complete unfolding. Simulations are now used to study the refolding of partially unfolded I27 domains. The results reveal that stretched domains with ruptured interstrand hydrogen bonds shrink along the extension direction. Two types of refolding patterns are recognized: for separated beta-strands A' and G, in most simulations five of the six hydrogen bonds between A' and G stably reformed in 2 ns, whereas for separated beta-strands A and B hydrogen bonds seldom reformed in eight 2-ns simulations. The mechanical stability of the partially refolded intermediates has been tested by re-stretching.  相似文献   

13.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

14.
Shu Q  Frieden C 《Biochemistry》2004,43(6):1432-1439
Murine adenosine deaminase (mADA) is a 40 kDa (beta/alpha)(8)-barrel protein consisting of eight central beta-strands and eight peripheral alpha-helices containing four tryptophan residues. In this study, we investigated the urea-dependent behavior of the protein labeled with 6-fluorotryptophan (6-(19)F-Trp). The (19)F NMR spectrum of 6-(19)F-Trp-labeled mADA reveals four distinct resonances in the native state and three partly overlapped resonances in the unfolded state. The resonances were assigned unambiguously by site-directed mutagenesis. Equilibrium unfolding of 6-(19)F-Trp-labeled mADA was monitored using (19)F NMR based on these assignments. The changes in intensity of folded and unfolded resonances as a function of urea concentration show transition midpoints consistent with data observed by far-UV CD and fluorescence spectroscopy, indicating that conformational changes in mADA during urea unfolding can be followed by (19)F NMR. Chemical shifts of the (19)F resonances exhibited different changes between 1.0 and 6.0 M urea, indicating that local structures around 6-(19)F-Trp residues change differently. The urea-induced changes in local structure around four 6-(19)F-Trp residues of mADA were analyzed on the basis of the tertiary structure and chemical shifts of folded resonances. The results reveal that different local regions in mADA have different urea-dependent behavior, and that local regions of mADA change sequentially from native to intermediate topologies on the unfolding pathway.  相似文献   

15.
Human pancreatitis-associated protein was identified in pathognomonic lesions of Alzheimer disease, a disease characterized by the presence of filamentous protein aggregates. Here, we showed that at physiological pH, human pancreatitis-associated protein forms non-Congo Red-binding, proteinase K-resistant fibrillar aggregates with diameters from 6 up to as large as 68 nm. Interestingly, circular dichroism and Fourier transform infrared spectra showed that, unlike typical amyloid fibrils, which have a cross-beta-sheet structure, these aggregates have a very similar secondary structure to that of the native protein, which is composed of two alpha-helices and eight beta-strands, as determined by NMR techniques. Surface structure analysis showed that the positively charged and negatively charged residues were clustered on opposite sides, and strong electrostatic interactions between molecules were therefore very likely, which was confirmed by cross-linking experiments. In addition, several hydrophobic residues were found to constitute a continuous hydrophobic surface. These results and protein aggregation prediction using the TANGO algorithm led us to synthesize peptide Thr(84) to Ser(116), which, very interestingly, was found to form amyloid-like fibrils with a cross-beta structure. Thus, our data suggested that human pancreatitis-associated protein fibrillization is initiated by protein aggregation primarily because of electrostatic interactions, and the loop from residues 84 to 116 may play an important role in the formation of fibrillar aggregates with a native-like conformation.  相似文献   

16.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

17.
1H NMR is used to study the solution structure of vitamin-D-induced bovine intestinal calcium-binding protein. The study of the native protein is aided by the recently published crystal structure; it is shown that the conformations of the molecule in the crystal and in solution are very similar. The effect of pH and temperature on the native structure is described. The structure of the apo protein is then described, and the effect of pH and temperature on its fold is outlined. A comparison between apo and native protein folds is made which indicates that the folds are very similar. The two folds are related by a calcium titration, which indicates that the protein binds two calcium ions sequentially. Both steps in the Ca2+ titration occur under conditions of slow exchange (kex 80 s-1). The effect of binding Ca2+ ions is to cause twisting motions of helices, with the helices acting as rods, relaying the conformational change induced by Ca2+ binding to the linker regions of the protein.  相似文献   

18.
The transition between the native and denatured states of the tetrameric succinyl-CoA synthetase from Escherichia coli has been investigated by circular dichroism, fluorescence spectroscopy, cross-linking by glutaraldehyde and activity measurements. At pH 7.4 and 25 degrees C, both denaturation of succinyl-CoA synthetase by guanidine hydrochloride and refolding of the denatured enzyme have been characterized as reversible reactions. In the presence of its substrate ATP, the denatured enzyme could be successfully reconstituted into the active enzyme with a yield of 71-100%. Kinetically, reacquisition of secondary structure by the denatured enzyme was rapid and occurred within 1 min after refolding was initiated. On the other hand, its reactivation was a slow process which continued up to 25 min before 90% of the native activity could be restored. Both secondary and quaternary structures of the enzyme, reconstituted in the absence of ATP, were indistinguishable from those of the native enzyme but the renatured protein was catalytically inactive. This observation indicates the presence of catalytically inactive tetramer as an intermediate in the reconstitution process. The reconstituted protein could be reactivated by ATP even 10 min after the reacquisition of the native secondary structure by the refolding protein. However, reactivation of the protein by ATP 60 min after the regain of secondary structure was significantly less, suggesting that rapid refolding and reassociation of the monomers into a native-like tetramer and reactivation of the tetramer are sequential events; the latter involving slow and small conformational rearrangements in the refolded enzyme that are likely to be associated with phosphorylation.  相似文献   

19.
A study of the regular secondary structure elements of recombinant human interleukin-1 beta has been carried out using NMR spectroscopy. Using a randomly 15N labeled sample, a number of heteronuclear three- and two-dimensional NMR experiments have been performed, which have enabled a complete analysis of short-, medium-, and long-range NOEs between protons of the polypeptide backbone, based on the sequence-specific resonance assignments that have been reported previously [Driscoll, P. C., Clore, G. M., Marion, D., Wingfield, P. T., & Gronenborn, A. M. (1990) Biochemistry 29, 3542-3556]. In addition, accurate measurements of a large number of 3JHN alpha coupling constants have been carried out by two-dimensional heteronuclear multiple-quantum-coherence-J spectroscopy. Amide NH solvent exchange rates have been measured by following the time dependence of the 15N-1H correlation spectrum of interleukin-1 beta on dissolving the protein in D2O solution. Analysis of these data indicate that the structure of interleukin-1 beta consists of 12 extended beta-strands aligned in a single extended network of antiparallel beta-sheet structure that in part folds into a skewed six-stranded beta-barrel. In the overall structure the beta-strands are connected by tight turns, short loops, and long loops in a manner that displays approximate pseudo-three-fold symmetry. The secondary structure analysis is discussed in the light of the unrefined X-ray structure of interleukin-1 beta at 3-A resolution [Priestle, J. P., Sch?r, H.-P., & Grütter, M. G. (1988) EMBO J. 7, 339-343], as well as biological activity data. Discernible differences between the two studies are highlighted. Finally, we have discovered conformational heterogeneity in the structure of interleukin-1 beta, which is characterized by an exchange rate that is slow on the NMR chemical shift time scale.  相似文献   

20.
Cyclodextrins (CDs) possess hydrophobic surfaces, which probably shield the hydrophobic surfaces of denatured proteins and prevent the direct interactions between the surfaces which are believed to be responsible for protein aggregation during refolding process. This probability was evaluated by studying the refolding process of denatured alpha-amylase in the presence and absence of alpha-CD, as a dilution additive agent. Our data indicate that in the presence of 100 mM alpha-CD in the refolding buffer, the extent of aggregation reduces by almost 90%. Spectrofluorometric analysis of the refolding intermediate(s) also indicates that the tertiary structure of the refolded alpha-amylase, in the presence of alpha-CD, is very similar to the tertiary structure of the native protein. However, this similarity was distorted upon addition of exogenous hydrophobic (aliphatic or aromatic) amino acids to the refolding buffer, meaning that the hydrophobic interactions between alpha-CD and the denatured protein play significant role in preventing aggregate formation. In addition, by weakening the extent of these hydrophobic interactions by adding polarity-reducing agent (e.g. ethylene glycol) to the refolding buffer, more aggregates were formed. In contrast, strengthening these interactions by enhancing the ionic strength of the refolding buffer made these hydrophobic interactions very strong. Therefore, alpha-CD could not depart from the protein/alpha-CD complex, as it usually does during the process of refolding. As a result, more aggregates were formed in the presence of alpha-CD compared to the corresponding control samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号