首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor, J. Biol. Chem. 281 (2006) 36036-36043.]. Although the screening produced various interesting cytochrome b mutations, it depends on the availability of inhibitors and can only reveal a very limited number of mutations. Furthermore, mutations leading to a respiratory deficient phenotype remain undetected. We therefore devised an approach where any type of mutation can be efficiently introduced in the cytochrome b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on non-fermentable substrates. If the mutated cytochrome b is non-functional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)). With this system, we created eight different yeast strains containing point mutations at three different codons in cytochrome b affecting center N. In addition, we created three point mutations affecting arginine 79 in center P. This is the first time mutations have been created for three of the loci presented here, and nine of the resulting mutants have never been described before.  相似文献   

2.
In addition to lethal minute colony mutations which correspond to loss of mitochondrial DNA, acriflavin induces in Chlamydomonas reinhardtii a low percentage of cells that grow in the light but do not divide under heterotrophic conditions. Two such obligate photoautotrophic mutants were shown to lack the cyanide-sensitive cytochrome pathway of the respiration and to have a reduced cytochrome c oxidase activity. In crosses to wild type, the mutations are transmitted almost exclusively from the mating type minus parent. A same pattern of inheritance is seen for the mitochondrial DNA in crosses between the two interfertile species C. reinhardtii and Chlamydomonas smithii. Both mutants have a deletion in the region of the mitochondrial DNA containing the apocytochrome b gene and possibly the unidentified URFx gene.  相似文献   

3.
The apoprotein of yeast cytochrome b is translated on mitochondrial ribosomes and coded for by a split gene which is located in the COB-BOX region on mitochondrial DNA. With the aid of an antibody against cytochrome b, we identified the cytochrome b-cross-reacting polypeptides of respiration-deficient mutants mapping either in coding or intervening sequences of the cytochrome b gene. Most mutations in the coding regions caused the accumulation of a single apocytochrome b fragment whose apparent molecular weight (12,000 to 26,600) depended on the map position of the mutation. In contrast, mutations in putative intervening sequences often led to multiple new polypeptides immunologically related to apocytochrome b. Some of these abnormal polypeptides were considerably larger than wild type apocytochrome b. This suggests that mutations in intervening sequences can thus generate aberrant polypeptide products.  相似文献   

4.
P Netter  C Jacq  G Carignani  P P Slonimski 《Cell》1982,28(4):733-738
We have established the DNA sequence of two cis-dominant mutations located in the fourth intron, a14, of the yeast mitochondrial gene oxi3. These mutations prevent the synthesis of subunit I of cytochrome oxidase. Both mutations affect a very short DNA sequence located several hundred base pairs from the intron-exon junctions. An identical sequence is found in the cob-box gene; and this sequence is critical for the excision of the cytochrome b intron. Our interpretation is that this short sequence represents a common signal that must be recognized by the box7-encoded mRNA maturase, in conjunction with the mitochondrial ribosome, to splice out the introns in the two nonhomologous genes, cob-box and oxi3.  相似文献   

5.
The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.  相似文献   

6.
7.
Unexpectedly low levels of mitochondrial DNA (mtDNA) cytochrome b sequence divergence are found between species of the scleractinian coral genus Acropora. Comparison of 964 positions of the cytochrome b gene of two out of the three Caribbean Acropora species with seven of their Pacific congeners shows only 0.3-0.8% sequence difference. Species in these biogeographic regions have been evolving independently for at least three million years (since the rise of the Isthmus of Panama) and this geological date is used to estimate nucleotide divergence rates. The results indicate that the Acropora cytochrome b gene is evolving at least 10-20 times slower than the 'standard' vertebrate mtDNA clock and is one of the most slowly evolving animal mitochondrial genes described to date. The possibility is discussed that, unlike higher animals, cnidarians may have a functional mtDNA mismatch repair system.  相似文献   

8.
The mitochondrial genomes of cytoplasmic "petite" (rho-) mutants of Saccharomyces cerevisiae have been used to sequence the cytochrome b gene. A continuous sequence of 6.2 kilobase pairs has been obtained from 71.4 to 80.2 units of the wild type map. This region contains all the cytochrome b mutations previously assigned to the cob1 and cob2 genetic loci. Analysis of the DNA sequence has revealed that in the strain D273-10B, the cytochrome b gene is composed of three exons. The longest exon (b1) codes for the first 252 to 253 amino acids from the NH2-terminal end of the protein. The next two exons (b2 and b3) code for 16 to 18 and 115 to 116 amino acids, respectively. The complete cytochrome b polypeptide chain consists of 385 amino acids. Based on the amino acid composition, the yeast protein has a molecular weight of 44,000. The three exon regions of the cytochrome b gene are separated by two introns. The intron between b1 and b2 is 1414 nucleotides long and contains a reading frame that is continuous with the reading frame of exon b1. This intron sequence is potentially capable of coding for another protein of 384 amino acid residues. The second intron is 733 nucleotides long. This sequence is rich in A + T and includes a G + C cluster that may be involved in processing of the cytochrome b messenger. The organization of the cytochrome b region in S. cerevisiae D273-10B is somewhat less complex than has been reported for other yeast strains i which exon b1 appears to be further fragmented into three smaller exons.  相似文献   

9.
1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.  相似文献   

10.
Mouse LA9 cell lines were selected for increased resistance to either HQNO or myxothiazol, inhibitors of electron transport which bind to the mitochondrial cytochrome b protein. Two phenotypically distinguishable HQNO-resistant mutants were recovered while the myxothiazol-resistant isolates had a common phenotype. All three mutant phenotypes were transmitted cytoplasmically in cybrid crosses. Biochemical studies further established that for all three mutant types, resistance at the cellular level was paralleled by an increase in inhibitor resistance of mitochondrial succinate-cytochrome c oxidoreductase, the respiratory complex containing cytochrome b. As with the previously described mitochondrial antimycin-resistant mutant, the initial biochemical and genetic studies indicated that these mutations occur within the mitochondrial cytochrome b gene. This conclusion was strongly supported by the results of mtDNA restriction fragment analyses in which it was found that one HQNO-resistant mutant had undergone a small insertion or duplication in the apocytochrome b gene. Finally, all four mitochondrial cytochrome b mutants have been analyzed in both cell plating studies and succinate-cytochrome c oxidoreductase assays to determine the pattern of cross-resistance to inhibitors of cytochrome b other than the one used for selection.  相似文献   

11.
Atovaquone is a new anti-malarial agent that specifically targets the cytochrome bc1 complex and inhibits parasite respiration. A growing number of failures of this drug in the treatment of malaria have been genetically linked to point mutations in the mitochondrial cytochrome b gene. To better understand the molecular basis of atovaquone resistance in malaria, we introduced five of these mutations, including the most prevalent variant found in Plasmodium falciparum (Y268S), into the cytochrome b gene of the budding yeast Saccharomyces cerevisiae and thus obtained cytochrome bc1 complexes resistant to inhibition by atovaquone. By modeling the variations in cytochrome b structure and atovaquone binding with the mutated bc1 complexes, we obtained the first quantitative explanation for the molecular basis of atovaquone resistance in malaria parasites.  相似文献   

12.
13.
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.  相似文献   

14.
The mitochondrial cob-box gene coding for apocytochrome b in yeast has five introns and six exons or two introns and three exons depending on the wild-type strain considered. Some intron mutations in this gene affect not only its expression but also that of another mitochondrial gene: oxi3. To understand better the function of introns in gene expression, we have constructed a series of new strains that differ only by the presence or absence of one of the five wild-type introns in the cytochrome b gene, the rest of the mitochondrial and nuclear genome remaining unchanged. All constructions result from in vivo recombination events between rho- donor and rho+ recipient mtDNA. The following genes have been constructed: [see text]. Interestingly, all the genes lead to the synthesis of cytochrome b, while only the genes having the intron bI4 allow the expression of oxi3. A nuclear gene, when mutated, can compensate for the absence of the intron bI4.  相似文献   

15.
I M Fearnley  J E Walker 《Biochemistry》1987,26(25):8247-8251
The bovine mitochondrial gene products ND2 and ND4, components of NADH dehydrogenase, have been purified from a chloroform/methanol extract of mitochondrial membranes, and the human mitochondrial gene products ND2 and cytochrome b have been obtained by similar procedures. They have been identified by comparison of their amino-terminal protein sequences with those predicted from DNA sequences of bovine and human mitochondrial DNA. All of the proteins have methionine as their amino-terminal residue. In bovine ND2, this residue is encoded by the "universal" isoleucine codon AUA, and the sequences of human cytochrome b and bovine ND2 demonstrate that AUA also encodes methionine in the elongation step of mitochondrial protein synthesis. In human ND2, the amino-terminal methionine is encoded by AUU, which, as in the "universal" genetic code, is also used as an isoleucine codon in elongation. Thus, AUU has a dual coding function which is dependent upon its context.  相似文献   

16.
Summary In the preceding paper of this series (Dujardin et al. 1980a) we described general methods of selecting and genetically characterizing suppressor mutations that restore the respiratory capacity of mit - mitochondrial mutations. Two dominant nuclear (NAM1-1 and NAM2-1) and one mitochondrial (mim2-1) suppressors are more extensively studied in this paper. We have analysed the action spectrum of these suppressors on 433 mit - mutations located in various mitochondrial genes and found that they preferentially alleviate the effects of mutations located within intron open reading frames of the cob-box gene. We conclude that these suppressors permit the maturation of cytochrome b mRNA by restoring the synthesis of intron encoded protein(s) catalytically involved in splicing i.e. mRNA-maturase(s) (cf. Lazowska et al. 1980). NAM1-1 is allele specific and gene non-specific: it suppresses mutations located within different introns. NAM2-1 and mim2-1 are intron-specific: they suppress mutations all located in the same (box7) intron of the cobbox gene. Analyses of cytochrome absorption spectra and mitochondrial translation products of cells in which the suppressors are associated with various other mit - mutations show that the suppressors restore cytochrome b and/or cytochrome oxidase (cox 1) synthesis, as expected from their growth phenotype. This suppression is, however, only partial: some new polypeptides characteristic of the mit - mutations can be still detected in the presence of suppressor. Interestingly enough when box7 specific suppressors NAM2-1 and mim2-1 are associated with a complete cob-box deletion (leading to a total deficiency of cytochrome b and oxidase) partial restoration of cox I synthesis is observed while cytochrome b is still totally absent. These results show that in strains carrying NAM2-1 or mim2-1 the presence of cytochrome b gene is no longer required for the expression of the oxi3 gene pointing out to the possibility of a mutational switch-on of silent genes, whether mitochondrial, mim2-1, or nuclear, NAM2-1. This switch-on would permit the synthesis of an active maturase acting as a substitute for the box7 maturase in order to splice the cytochrome b and oxidase mRNAs.  相似文献   

17.
In the mitochondrial DNA of Saccharomyces cerevisiae, the genes cob-box and oxi3, coding for apocytochrome b and cytochrome oxidase subunit I respectively, are split. Several mutations located in the introns of the cob-box gene prevent the synthesis of cytochrome b and cytochrome oxidase subunit I (this is known as the 'box effect').-We have elucidated the molecular basis of this phenomenon: these mutants are unable to excise the fourth intron of oxi3 from the cytochrome oxidase subunit I pre-mRNA; the absence of a functional bI4 mRNA maturase, a trans-acting factor encoded by the fourth intron of the cob-box gene explains this phenomenon. This maturase was already known to control the excision of the bI4 intron; consequently we have demonstrated that it is necessary for the processing of two introns located in two different genes. Mutations altering this maturase can be corrected, but only partially, by extragenic suppressors located in the mitochondrial (mim2) or in the nuclear (NAM2) genome. The gene product of these two suppressors should, therefore, control (directly or indirectly) the excision of the two introns as the bI4 mRNA maturase normally does.  相似文献   

18.
The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the ophthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences.  相似文献   

19.
Here, relationships between alterations in tissue-specific content, protein structure, activity, and/or assembly of respiratory complexes III and IV induced by mutations in corresponding genes and various human pathologies are reviewed. Cytochrome bc(1) complex and cytochrome c oxidase (COX) deficiencies have been detected in a heterogeneous group of neuromuscular and non-neuromuscular diseases in childhood and adulthood, presenting a number of clinical phenotypes of variable severity. Such disorders can be caused by mutations located either in mitochondrial genes or in nuclear genes encoding structural subunits of the complexes or corresponding assembly factors/chaperones. Of the defects in mitochondrial DNA genes, mutations in cytochrome b subunit of complex III, and in structural subunits I-III of COX have been described to date. As to defects in nuclear DNA genes, mutations in genes encoding the complexes assembly factors such as the BCS1L protein for complex III; and SURF-1, SCO1, SCO2, and COX10 for complex IV have been identified so far.  相似文献   

20.
The mitochondrial cytochrome bc(1) complex is a key protonmotive component of eukaryotic respiratory chains. The mitochondrially encoded cytochrome b forms, with cytochrome c(1) and the iron--sulfur protein, the catalytic core of this multimeric enzyme. Mutations of cytochrome b have been reported in association with human diseases. In the highly homologous yeast cytochrome b, several mutations that impair the respiratory function, and reversions that correct the defect, have been described. In this paper, we re-examine the mutations in the light of the atomic structure of the complex, and discuss the possible effect, at enzyme level, of the human cytochrome b mutations and the correcting effect of the reversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号