首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medullary portion of the thick ascending limb of the loop of Henle (TALH) has one of the highest concentrations of Na+-K+-ATPase found in mammalian tissues, reflecting the importance of this nephron segment in the regulation of extracellular fluid volume, as active sodium transport is driven by Na+-K+-ATPase. We have isolated cells derived primarily from the TALH of the outer medulla of rabbit kidney and have identified a cytochrome P450-dependent monooxygenase system which metabolizes arachidonic acid to two biologically active oxygenated peaks, each containing two or more products. One of the peaks potently inhibits cardiac Na+-K+-ATPase and the other relaxes blood vessels. We report that formation of these oxygenated arachidonate metabolites is stimulated by arginine vasopressin and salmon calcitonin. In TALH cells obtained from rabbits made hypertensive by aortic constriction there was a selective increase in P1 and P2 formation compared to other renomedullary cells.  相似文献   

2.
Arachidonic acid metabolites regulate interleukin-1 production   总被引:5,自引:0,他引:5  
We have investigated the role of arachidonic acid metabolites in the regulation of interleukin-1 production by murine peritoneal macrophages. Indomethacin a potent inhibitor of prostaglandin synthesis caused a dose-dependent augmentation of lipopolysaccharide induced interleukin production (up to 7-fold at 5 microM). In contrast, lipoxygenase inhibitors, nordihydroguarietic acid and nafazatrom had no effect at doses that did not significantly decrease prostaglandin synthesis. Added to lipopolysaccharide stimulated cultures, PGE2 was also augmented by indomethacin but unlike lipopolysaccharide treated cultures was suppressed by nordihydroguarietic acid. These data suggest that arachidonate metabolites may be potent autoregulators of macrophage interleukin-1 production.  相似文献   

3.
Production of prostaglandin E2 (PGE2), F2 alpha (PGF2 alpha) and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by pregnant rat uterus were measured in vitro. At mid-pregnancy, myometrium incubated with decidua attached released more prostanoids into the culture medium than when incubated without. As pregnancy progressed to 21 days more prostanoids were detected in the culture medium. However, no significantly increased conversion of exogenous arachidonic acid (AA) by myometrium was found.  相似文献   

4.
A problem of leukotrienes--metabolites of arachidonic acid is reviewed in immunological aspects. Their nomenclature is given; basic pathways of biosynthesis, transformation and mode of leukotriens participation in hypersensitivity and inflammatory reactions are considered. The possibility of application of leukotrienes antagonists and inhibitors of their formation for allergic diseases treatment is discussed.  相似文献   

5.
6.
Blood concentration of PGE2, F2a, 6 keto PGF1a (6kF1a), TxB2 and 13, 14 dehydro 15 keto PGE2 (13, 14 OH 15 k E2) were measured in renal artery and vein of a patient with a PGs producing nephroblastoma. The tumor tissue produced PGs in the following order: PGF2a>PGE2>TxB2>6kF1a>13, 14 OH 15 k E2. However, renal artery concentration of the substances were as follows: 13, 14 OH 15 k E2>TxB2>6kF1a>PGF2a>PGE2. Since arterial concentration is critical to postulating a calcium mobilizing effect on bone tissue, PGE2 arterial level seems to be too low to exert a pathogenetic role on hypercalcemia, at least in the patient reported here.  相似文献   

7.
Blood concentration of PGE2, F2a, 6 keto PGF1a (6kF1a), TxB2 and 13, 14 dehydro 15 keto PGE2 (13, 14 OH 15 k E2) were measured in renal artery and vein of a patient with a PGs producing nephroblastoma. The tumor tissue produced PGs in the following order: PGF2a greater than PGE2 greater than TxB2 greater than 6kF1a greater than 13, 14 OH 15 k E2. However, renal artery concentration of the substances were as follows: 13, 14 OH 15 k E2 greater than TxB2 greater than 6kF1a greater than PGF2a greater than PGE2. Since arterial concentration is critical to postulating a calcium mobilizing effect on bone tissue, PGE2 arterial level seems to be too low to exert a pathogenetic role on hypercalcemia, at least in the patient reported here.  相似文献   

8.
Radiation-induced renal injury is characterized by proteinuria, hypertension, and progressive decline in renal function. We have previously shown that in vivo or in vitro irradiation of glomeruli with a single dose of radiation (9.5 Gy) increases glomerular albumin permeability (P(alb)) within 1 hr. The current studies tested the hypothesis that this early radiation-induced increase in P(alb) is caused by the release of arachidonic acid and by the generation of specific arachidonic acid metabolites. Glomeruli obtained from WAG/Rij/MCW rats and cultured rat glomerular epithelial and mesangial cells were studied after irradiation (9.5 Gy, single dose). Arachidonic acid release and eicosanoid synthesis by glomeruli or cultured glomerular cells were measured after irradiation, and the effect of inhibitors of phospholipase A2 (PLA2) and cyclooxygenase (COX) on the irradiation-induced increase in P(alb) was assessed. Arachidonic acid release was demonstrated within 10 mins of irradiation of isolated glomeruli and monolayer cultures of glomerular epithelial and mesangial cells. Prostaglandin F(2alpha) (PGF(2alpha)) and PGE2 release was increased after irradiation of isolated glomeruli. Blocking arachidonic acid release or COX activity before irradiation completely prevented the increase in P(alb). COX inhibition immediately after irradiation also diminished the radiation-induced increase in P(alb). We conclude that arachidonic acid and its COX metabolites play an essential role in the early cellular changes that lead to the radiation-induced increase in P(alb). Understanding of the early epigenetic effects of irradiation may lead to new intervention strategies against radiation-induced injury of normal tissues.  相似文献   

9.
We tested the hypotheses that EDHF in rat middle cerebral arteries (MCAs) involves 1) metabolism of arachidonic acid through the epoxygenase pathway, 2) metabolism of arachidonic acid through the lipoxygenase pathway, or 3) reactive oxygen species. EDHF-mediated dilations were elicited in isolated and pressurized rat MCAs by activation of endothelial P2Y(2) receptors with either UTP or ATP. All studies were conducted after the inhibition of nitric oxide synthase and cyclooxygenase with N(omega)-nitro-l-arginine methyl ester (10 microM) and indomethacin (10 microM), respectively. The inhibition of epoxygenase with miconazole (30 microM) did not alter EDHF dilations to UTP, whereas the structurally different epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanoic acid (20 or 40 microM) only modestly inhibited EDHF at the highest concentration of UTP. An antagonist of epoxyeicosatrienoic acids, 14,15-epoxyeicosa-5(Z)-enoic acid, had no effect on EDHF dilations to UTP. Chronic inhibition of epoxygenase in the rat with 1-aminobenzotriazol (50 mg/kg twice daily for 5 days) did not alter EDHF dilations. The inhibition of the lipoxygenase pathway with either 10 microM baicalein or 10 microM nordihydroguaiaretic acid produced no major inhibitory effects on EDHF dilations. The combination of superoxide dismutase (200 U/ml) and catalase (140 U/ml) had no effect on EDHF dilations. Neither tiron (10 mM), a cell-permeable scavenger of reactive oxygen species, nor deferoxamine (1 or 10 mM), an iron chelator that blocks the formation of hydroxyl radicals, altered EDHF dilations in rat MCAs. We conclude that EDHF dilations in the rat MCA do not involve the epoxygenase pathway, lipoxygenase pathway, or reactive oxygen species including H(2)O(2).  相似文献   

10.
There is evidence from whole animal and intact lung studies that prostaglandins are involved in the regulation of surfactant secretion. To explore this further we examined the effect of arachidonic acid on secretion of phosphatidylcholine in primary cultures of adult rat type II pneumocytes. Arachidonic acid stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 1-8 microM. Arachidonic acid (8 microM) stimulated secretion by 79% from a basal rate of 1.17% total cellular phosphatidylcholine secreted in 90 min to 2.09%. We examined the effects of inhibitors of arachidonic acid metabolism on the stimulatory effect. Nordihydroguairaretic acid (0.1 microM), a lipoxygenase inhibitor, reduced the stimulatory effect by 64%. The same concentration of cyclooxygenase inhibitors had no effect. We conclude that arachidonic acid metabolites stimulate surfactant secretion in type II cells. Whether this effect is mediated by leukotrienes or other products remains to be established.  相似文献   

11.
Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.  相似文献   

12.
The aim of this study was to investigate circadian variation in concentrations of arachidonic acid (AA) metabolites in relation to the circadian pattern in bronchial patency. Blood samples were obtained at 4-hr intervals from 2000 of 1 day until 1400 of the next from 12 diurnally active asthmatic and six diurnally active non-asthmatic patients. Bloods were analyzed for the prostanoids thromboxane A2 (measured as stable metabolite 6-keto-PGF1a), PGE2 and PGF2a. Airways patency was assessed by self-measurement of peak expiratory flow (PEF). In asthmatics, circadian variation was detected in PEF as well as PGE2 and TXB2. The circadian trough of the PEF rhythm closely coincided with the circadian peak of the PGE2 and TXB2 rhythms. In the controls, the PEF was not circadian rhythmic. Of the AA metabolites only 6-keto-PGF1a exhibited 24-hr bioperiodicity in the controls. The controls exhibited a significantly higher circadian mean of PEF (P less than 0.001), while the asthmatics had a lower 24-hr average PGE2 but greater mean TXB2/PGE2 ratio. The obstructive effect caused by the overall 24-hr deficiency of PGE2 in asthmatics is possibly amplified by the increased of TXB2 during the early morning hours. This dissociation of the temporal patterns in TXB2 and PGE2 levels over the 24 hr is discussed as a characteristic finding for asthmatics.  相似文献   

13.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe. Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5μM; and was maximally effective at 50μM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+i than indomethacin. Prostaglandin F (PGF) as well as prostaglandin E2 (PGE2) increased [Ca2+ in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

14.
Vasculitis is accepted to be the basis of Behçet's disease (BD) which is a multisystem disease, and the arachidonic acid(AA) metabolites acting as balancing mediators in the organism are accepted to be responsible for the vasculitis.In this study, we examined the prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) levels of the patients with BD before and after colchicine therapy. We found a statistical decrease in the PGE2 and LTC4 levels after colchicine therapy compared to the previous levels, concluding that colchicine inhibits the inflammation and the polymorphonuclear leukocyte (PML) chemotaxis by inhibiting the cyclooxygenase and lipoxygenase patways.  相似文献   

15.
Our purpose was to determine whether production of arachidonic acid metabolites, particularly cyclooxygenase (COX) metabolites, is altered in 100-400-microm-diameter pulmonary arteries of piglets at an early stage of pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. A cannulated artery technique was used to measure responses of 100-400-microm-diameter pulmonary arteries to arachidonic acid, a prostacyclin analog, or the thromboxane mimetic. Radioimmunoassay was used to determine pulmonary artery production of thromboxane B(2) (TxB(2)) and 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), the stable metabolites of thromboxane and prostacyclin, respectively. Assessment of abundances of COX pathway enzymes in pulmonary arteries was determined by immunoblot technique. Arachidonic acid induced less dilation in pulmonary arteries from hypoxic than in pulmonary arteries from control piglets. Pulmonary artery responses to prostacyclin and were similar for both groups. 6-Keto-PGF(1alpha) production was reduced, whereas TxB(2) production was increased in pulmonary arteries from hypoxic piglets. Abundances of both COX-1 and prostacyclin synthase were reduced, whereas abundances of both COX-2 and thromboxane synthase were unaltered in pulmonary arteries from hypoxic piglets. At least partly due to altered abundances of COX pathway enzymes, a shift in production of arachidonic acid metabolites, away from dilators toward constrictors, may contribute to the early phase of chronic hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

16.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function.  相似文献   

17.
[1-14C]Arachidonic acid was incubated with microsomes of bovine adrenal fasciculata cells in the presence of 1 mM NADPH for 30 min at 37 degrees C. The metabolites were separated and purified by reverse phase high performance liquid chromatography, and identified by gas chromatography-mass spectrometry. Identified metabolites were four dihydroxyeicosatrienoic acids (DHTs) (5,6-, 8,9-, 11,12-, 14,15-DHTs), 20-hydroxyeicosatetraenoic acid and eicosatetradioic acid. The formation of these metabolites was dependent on NADPH and inhibited by SKF-525A. 14,15-DHT was also formed by isolated bovine adrenal fasciculata cells. These results indicate that cytochrome P-450 dependent arachidonate monooxygenase pathway may exist in bovine adrenal fasciculata cells. Addition of the chemically synthesized epoxyeicosatrienoic acids (EETs) to isolated bovine adrenal fasciculata cells stimulated cortisol production. Among four regioisomeric EETs, 14,15-EET was most potent and stimulated steroidogenesis in a dose-related manner over a range of 0.5 to 5.0 microM.  相似文献   

18.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

19.
Astrocyte-induced modulation of synaptic transmission   总被引:8,自引:0,他引:8  
The idea that astrocytes simply provide structural and trophic support to neurons has been challenged by recent evidence demonstrating that astrocytes exhibit a form of excitability and communication based on intracellular Ca2+ variations and intercellular Ca2+ waves, which can be initiated by neuronal activity. These astrocyte Ca2+ variations have now been shown to induce glutamate-dependent Ca2+ elevations and slow inward currents in neurons. More recently, it has been demonstrated that synaptic transmission between cultured hippocampal neurons can be directly modulated by astrocytes. We have reported that astrocyte stimulation can increase the frequency of miniature synaptic currents. Furthermore, we also have demonstrated that an elevation in the intracellular Ca2+ in astrocytes induces a reduction in both excitatory and inhibitory evoked synaptic transmission through the activation of selective presynaptic metabotropic glutamate receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号