首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
2.
Peripheral blood flow can be regulated by specialized vessel segments, the arteriovenous anastomoses. Their wall consists of a relatively thick layer of smooth muscle cells and so-called epithelioid cells. The epithelioid cell is a specialized myogenic cell phenotype expressing nitric oxide synthase. We studied the innervation of the different segments of arteriovenous anastomoses in the rabbit ear using antisera against neuropeptide Y, tyrosine hydroxylase, calcitonin gene-related peptide and substance P, as well as neuron-specific enolase, calbindin D and neurotubulin. The participation was especially examined of neuropeptidergic innervation and a possible morphological connection to the occurrence of epithelioid cells and a paracrine function. The NADPH diaphorase reaction and -smooth muscle actin immunoelectron microscopy served to distinguish epithelioid cells from smooth muscle cells. Using conventional fluorescence microscopy and confocal laser scanning microscopy, we found the most dense innervation pattern of pan-neuronal markers (neurotubulin, neuron-specific enolase), tyrosine hydroxylase-immunor eactive nerve fibres and neuro-peptidergic nerve fibres (neuropeptide Y, calcitonin gene-related peptide, substance P) around the intermediate segment in arteriovenous anastomoses, whereas the venous segment was barely marked. Single nerve fibres penetrated into the medial layer and reached the epithelioid cells. Using immunoelectron microscopy, we found intercellular contacts between epithelioid cells, but not the gap junction protein connexin 43. Here, we report for the first time a correlation of the innervation pattern with epithelioid cell type in arteriovenous anastomoses. Our findings suggest that epithelioid cells of the arteriovenous anastomoses are controlled by a dense network of neuropeptidergic nerve fibres in functional connection to their paracrine role as a nitric oxide producer. © 1998 Chapman & Hall  相似文献   

3.
The nervous system of the vallata papilla and von Ebner glands was investigated in the rat tongue. Cells involved in the production of nitric oxide were identified by immunohistochemical detection of neuronal nitric oxide synthase type-1 and by cytochemical detection of NADPH-diaphorase. The analysis of serial sections showed that a ganglion composed of about 180–190 neuronal cells was present between the vallata papilla and von Ebner glands. These cells were positive for nitric oxide synthase type-1 and NADPH-diaphorase. From the ganglion, we observed nitrergic fibres running: (a) in the lamina propria of the receptor-free mucosa; (b) just below the gustatory epithelium; (c) in the von Ebner glands; and (d) around the vascular system of the vallata papilla. Our study suggests that the nitrergic ganglion cells may mediate interactions between chemoreceptorial systems in the vallata papilla and secretory cells in the von Ebner glands and that nitric oxide could be involved in the regulation of the blood supply to the vallata papilla and in the regulation of the von Ebner glands.  相似文献   

4.
Summary Accumulating evidence confirms that nitric oxide (NO), a versatile diffusible signaling molecule, contributes to controling of adult neurogenesis. We have previously shown the timing of NADPH-diaphorase (NADPH-d) positivity within the rat rostral migratory stream (RMS) during the first postnatal month. The present study was designed to describe further age-related changes of NO presence in this neurogenic region. The presence of NO synthesizing cells in the RMS was shown by NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry. The phenotypic identity of nitrergic cells was examined by double labeling with GFAP and NeuN. Systematic qualitative and quantitative analysis of NADPH-d-positive cells was performed in the neonatal (P14), adult(5 months) and aging (20 months) rat RMS. 1. Nitrergic cells with different distribution pattern and morphological characteristics were present in the RMS at all ages examined. In neonatal animals, small, moderately stained NADPH-d-positive cells were identified in the RMS vertical arm and in the RMS elbow. In adult and aging rats a few labeled cells could be also detected in the RMS horizontal arm. NADPH-d-positive cells in adult and aging rats were characterized by long varicose processes and displayed dark labeling in comparison to the neonatal group. 2. Double immunolabeling has revealed that nNOS-immunoreactivity co-localized with that of NeuN. This indicates that nitrergic cells within the RMS are neurons. 3. Quantitative analysis showed that the number of NADPH-d-positive cells increases with advancing age. The presence of NO producing cells in the RMS of neonatal adult and aging rats indicates, that this proliferating and migratory area is under the influence of NO throughout the entire life of the animals.  相似文献   

5.
Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of co-localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of co-localization experiments for VAChT/NOS were consistent with those obtained by cytochemical co-localization of AChE and NADPHd. Experiments of co-localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.  相似文献   

6.
Nitric oxide synthase in the rat carotid body and carotid sinus   总被引:5,自引:0,他引:5  
The participation of nitric oxide synthase (NOS) in the innervation of the rat carotid body and carotid sinus was investigated by means of NADPH-diaphorase histochemistry and NOS immunohistochemistry using antisera raised against purified neuronal NOS and a synthetic tridecapeptide. NOS was detected in 23% of neurons at the periphery of the carotid bodies. Some negative neurons were surrounded by NOS-positive terminals. NOS-containing varicose nerve fibres innervated the arterial vascular bed and, to a lesser extent, the islands of glomus cells. These fibres persisted after transection of the carotid sinus nerve and are probably derived from intrinsic neurons. Large NOS-positive axonal swellings in the wall of the carotid sinus were absent after transection of the sinus nerve, indicating their sensory origin. The results suggest a neuronal nitrergic control of blood flow, neuronal activity and chemoreception in the carotid body, and an intrinsic role of NO in the process of arterial baroreception.  相似文献   

7.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

8.
The human colon can dilate, often to life-threatening proportions. Our aim was to explore nitrergic mechanisms underlying colonic dilation in conscious dogs with enterically isolated ileocolonic loops either extrinsically innervated (n = 4) or extrinsically denervated (n = 4). We recorded phasic pressures in ileum and ileocolonic sphincter (ICS), colonic tone, compliance, and relaxation during ileal distension. By NADPH-diaphorase histochemistry, we assessed effects of extrinsic denervation and enteric isolation on nitrergic fibers. Extrinsic denervation increased phasic pressures in ileum, ICS, and colon and abolished ICS and colonic relaxation in response to ileal distension. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine (L-NNA) increased phasic pressures at all sites and ICS tone but did not abolish colonic relaxation during ileal distension in innervated loops. L-NNA reduced compliance and induced colonic high-amplitude propagated contractions in denervated loops. The NOS substrate donor L-arginine reversed effects of L-NNA. The number of NADPH-diaphorase fibers increased in both enterically isolated preparations. Nonnitrergic extrinsic nerve pathways mediate reflex colonic relaxation during ileal distension. Enteric isolation augments the number of NOS fibers, an effect not modified by extrinsic denervation.  相似文献   

9.
Histochemistry for NADPH-diaphorase detects an enzymatic activity associated with nitric oxide synthase while immunohistochemistry detects the nitric oxide synthase molecule. NADPH-diaphorase and inducible isoform of nitric oxide synthase in Leydig cells in vitro and in testis sections of the bank vole were demonstrated histochemically and immunocytochemically. Histochemical studies revealed localization of NADPH-diaphorase reaction product in the cytoplasm of cultured Leydig cells as well as in the interstitial area, mainly in Leydig cells and in vascular endothelium. Distribution pattern of NADPH-diaphorase was different in Leydig cell cytoplasm of individual cells. Using immunocytochemistry, the immunoreactivity for nitric oxide synthase was observed both in cultured Leydig cells and testis sections. Moreover, a co-localization of positively immunostained cells with those histochemically detected was noticed. Addition of hCG to the cultured medium or injections in vivo resulted in a small decrease in reaction intensity in Leydig cells. Treatment with N omega-nitro-L-arginine methyl ester resulted in distinctly weaker reactivity of the enzymes studied which was correlated with a higher testosterone and estradiol levels in Leydig cells measured radioimmunologically. The results have indicated that nitric oxide synthase is able to act directly within the male gonad regulating androgen secretion by Leydig cells.  相似文献   

10.
Summary Nitric oxide (NO) is a ubiquitous gaseous neurotransmitter that has been ascribed to a large number of physiological roles in sensory neurons. It is produced by the enzyme nitric oxide synthase (NOS). To identify the NOS-containing structures of rat trigeminal primary afferent neurons, located in the trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN), histochemistry to its selective marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) was applied in this study. In the TrG approximately half of the neuronal population was NADPH-d reactive. Strongly positive were neurons mainly of small-to-medium size. Neuronal profiles of large diameter were less intensely stained. In addition, NADPH-d-positive nerve fibers were dispersed throughout the ganglion. Nitrergic neurons were located in the caudal part and mesencephalic-pontine junction of the MTN. Most of them were large-sized pseudounipolar cells. In a more rostral aspect, the reactive psedounipolar MTN profiles gradually decreased in number and intensity of staining. There, only a fine meshwork of stained thin fibers and perisomatic terminal arborizations, and also some isolated perikarya of NADPH-d stained multipolar MTN neurons, were observed. The predominant NADPH-d localization in smaller in size TrG neurons, which are considered nociceptive, suggests that NO may play a role in the pain transmission in the rat trigeminal afferent pathways. In addition, the wide distribution of NADPH-d activity in large pseudounipolar and certain multipolar MTN neurons provides substantial evidence that NO may also participate in mediating proprioceptive information from the orofacial region. The differential expression patterns of nitrergic fibers in the TrG and MTN suggest that trigeminal sensory information processing is controlled by nitrergic input through different mechanisms.  相似文献   

11.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish.  相似文献   

12.
人胎大肠氮能神经元发育的研究   总被引:5,自引:0,他引:5  
By using histochemical methed of NADPH-diaphorse, the development of the nitrergic neurons in the large intestine of human fetus were studied. The results showed: At the fifth month of gestation, weak positive reaction of nitric oxide synthase (NOS) appeared in part of the round cells of intermuscular ganglia. The round cells differentiated into the nitrergic nerve cells. At the sixth month, the bodies of nitrergic neurons were obviously enlarged, the processes of which were lengthened. The nitrergic nerve fibers were seen in the muscle layer, the submucosa and the base of the intestinal gland. The growth and development of nitrergic neurons reached its peak at the seventh month. The number of intermuscular ganglionic cells was increased. The density of nitrergic nerve fibers was increased in the inner circular muscle layer, and have bead-like structures. At the eighth to tenth month, the staining intensity of nitrergic neurons was increased. The myenteric plexus was densely distributed with nitrergic nerve cell bodies, whereas the submucosa and the inner circular muscle layers contained only a few neurons. The nitrergic nerve fibers were observed in all layer of large intestine, the density of the distribution of nitrergic nerve fibers was by far the highest in the inner circular muscle layer, less in the submucosa and outer longitudinal muscle layer, and only a few were found in the mucous layer. To our knowledge, it is the first time that the development of nitrergic neurons in the large intestine of human fetus was demonstrated.  相似文献   

13.
用NADPH-d组织化学法对人胎大肠氮能神经元的发育进行了观察.结果表明第5个月胎龄时,肌间神经节处圆形细胞中部分细胞出现一氧化氮合酶(NOS)阳性反应,并分化成氮能神经细胞.第6个月胎龄时,氮能神经元胞体增大,突起伸长,在肌层、粘膜下层和肠腺基部出现氮能神经纤维分布.第7个月胎龄时,氮能神经元生长发育达到高峰,肌间神经节细胞数目增多,环肌层神经纤维分布密度增加,膨体结构明显.第8-10个月胎龄时,氮能神经元染色强度加深,其胞体分布以肌间神经节最多,粘膜下层和内环肌层较少.氮能神经纤维的分布密度以内环肌层最高,粘膜下层和外纵肌层次之,粘膜层较低.本研究揭示了大肠氮能神经元发育的变化规律.  相似文献   

14.
Induction of nitric oxide synthase and increased production of nitric oxide in microglia may play a crucial role in neuronal damage and neurodegenerative disorders. In the present study we have used light and electron microscopical NADPH-diaphorase histochemistry as the visualization procedure for nitric oxide synthase to investigate the time-course and subcellular patterns of NADPH-diaphorase expression in microglia/macrophages of quinolinic acid-lesioned rat striatum. For light microscopy, NADPH-diaphorase histochemistry sections were stained with nitroblue tetrazolium, while for ultrastructural analysis the tetrazolium salt 2-(2-benzothiazolyl)-5-styryl-3(4-phthalhydrazidyl) tetrazolium chloride (BSPT) was applied. Light microscopical inspection revealed a progressively increasing number of positive cells with increasing intensity of NADPH-diaphorase staining in microglia/macrophages from day 1 after quinolinic acid injection onward. Electron microscopical examination revealed a membrane bound NADPH-diaphorase in quiescent microglia as well as in activated microglia/macrophages through all stages of the lesion studied. Predominantly membranes of the nuclear envelope and the endoplasmic reticulum were labeled with BSPT-formazan, while in advanced stages selective membrane portions of mitochondria, Golgi apparatus and plasmalemma were also stained. From day 5 onward after lesion induction, a very distinctive type of NADPH-diaphorase was observed, forming accumulations of electron-dense grains that were distributed differentially throughout cytoplasmic areas and phagocytic vacuoles. Dynamics of expression, unique cytosolic localization and occurrence exclusively in activated microglia/macrophages suggest that this particular NADPH-diaphorase activity probably reflects the inducible isoform of nitric oxide synthase, whereas the membrane-bound precipitate may represent the neuronal and/or the endothelial isoform of the enzyme.  相似文献   

15.
The widely used NADPH-diaphorase reaction for demonstrating neuronal nitric oxide synthase is not as specific as previously thought, as it visualizes both a nitric oxide synthase-related activity and a nitric oxide synthase-unrelated diaphorase. In the present study, we used the rat olfactory bulb as a model to characterize the NADPH-diaphorase activity of neuronal nitric oxide synthase histochemically in comparison with neuronal nitric oxide-unrelated diaphorase activity. The NADPH-diaphorase activity of nitric oxide synthase peaked at pH 8 and at Triton X-100 concentrations of 1--2.5%. It was stable in an acidic environment but was reduced in the presence of Triton X-100 and was inactivated by the flavoprotein inhibitor, diphenyleneiodonium. It preferred beta-NADPH as the co-substrate to alpha-NADPH and alpha-NADH. In contrast, nitric oxide synthase-unrelated diaphorase peaked at pH 10, displayed a Triton X-100 optimum at a concentration of 1%, was unstable in an acidic environment and used beta-NADPH, alpha-NADPH and alpha-NADH to similar extents. Differences in the characteristics between neuronal nitric oxide synthase-related and nitric oxide synthase-unrelated NADPH-diaphorase can be used to increase the specificity of the histochemical nitric oxide synthase marker reaction. © Chapman & Hall  相似文献   

16.
河北环毛蚓神经系统 一氧化氮合酶的组织化学定位   总被引:8,自引:1,他引:7  
用依赖还原型辅酶Ⅱ的黄酶组织化学方法,研究了环节动物门寡毛纲种类河北环毛蚓(Pheretima tschiliensis)神经系统k 一氧化氮合酶(NOS)阳性细胞及阳性纤维的分布,结果表明,河北环毛蚓神经系统中脑神经节背侧有大量细胞呈现NO强阳性反应,胞体和突起染色明显。咽下神经中偶尔能见少数染色较浅的神经元。在脑神经节腹内侧、围咽神经、 咽下神经节外侧部及腹神经链中都有一氧化氮合酶阳性纤维存在脸染色很深,实验结果表明,在环节动物中作为信息分子的一氧化氮已广泛存在于神经系统中。  相似文献   

17.
Nitrergic neurotransmission at the smooth muscle neuromuscular junctions requires nitric oxide (NO) release that is dependent on the transport and docking of neuronal NO synthase (nNOS) α to the membrane of nerve terminals. However, the mechanism of translocation of nNOSα in actin-rich varicosities is unknown. We report here that the processive motor protein myosin Va is necessary for nitrergic neurotransmission. In wild-type mice, nNOSα-stained enteric varicosities colocalized with myosin Va and its tail constituent light chain 8 (LC8). In situ proximity ligation assay showed close association among nNOSα, myosin Va, and LC8. nNOSα was associated with varicosity membrane. Varicosities showed nitric oxide production upon stimulation with KCl. Intracellular microelectrode studies showed nitrergic IJP and smooth muscle hyperpolarizing responses to NO donor diethylenetriamine-NO (DNO). In contrast, enteric varicosities from myosin Va-deficient DBA (for dilute, brown, non-agouti) mice showed near absence of myosin Va but normal nNOSα and LC8. Membrane-bound nNOSα was not detectable, and the varicosities showed reduced NO production. Intracellular recordings in DBA mice showed reduced nitrergic IJPs but normal hyperpolarizing response to DNO. The nitrergic slow IJP was 9.1 ± 0.7 mV in the wild-type controls and 3.4 ± 0.3 mV in the DBA mice (P < 0.0001). Deficiency of myosin Va resulted in loss of nitrergic neuromuscular neurotransmission despite normal presence of nNOSα in the varicosities. These studies reveal the critical importance of myosin Va in nitrergic neurotransmission by facilitating transport of nNOSα to the varicosity membrane.  相似文献   

18.
Y K Ng  Y D Xue  P T Wong 《Nitric oxide》1999,3(5):383-392
The distribution of nitric oxide synthase-containing neurons was studied in the rat and mouse hypothalamus by immunohistochemistry and NADPH-diaphorase histochemistry. Immunostaining and NADPH-diaphorase staining of hypothalamic neurons were comparable in all hypothalamic nuclei of either species except in the arcuate nucleus that stained positive for nitric oxide synthase immunoreactivity but negative for NADPH-diaphorase reactivity. The presence of nitric oxide synthase-immunopositive neurons in the arcuate nucleus was confirmed by nitric oxide synthase immunofluorescence viewed under the confocal microscope at 1 microm thickness. Cross-species comparison showed that, in general, the number and intensity of nitric oxide synthase-containing neurons were much higher in the rat than in the mouse hypothalamus. Differences in the distribution of nitric oxide synthase-containing neurons between these two rodents were found in most hypothalamic nuclei. In particular, two dense clusters of nitric oxide synthase-containing neurons were found in the paraventricular and supraoptic nuclei of the rat hypothalamus in contrast to their scarcity in the same nuclei of the mouse hypothalamus.  相似文献   

19.
NADPH-diaphorase (NADPH-d) was used as a marker for neuronal nitric oxide synthase in order to investigate the nitrergic neurons of the developing myenteric ganglia on whole-mount preparations in the proximal and distal segments of the small intestine and in the colon of the chicken embryo, between incubation days 12 and 19. Neurons that were positive for NADPH-d were counted in randomly selected myenteric ganglia. The data obtained from each area and each age group were subjected to two-way analysis of variance (ANOVA) and the Student–Newman–Keuls test. Between incubation days 12 and 19, the originally narrow-meshed myenteric plexus with its high ganglionic density progressively became wide-meshed and the ganglionic density decreased significantly. Quantitative analysis further revealed a significant decrease in the NADPH-d-positive nerve cell density with age. At the same time, the constant or even increasing number of nitrergic cells per ganglion may indicate that the decreasing cell density may be a result of the growth of the bowel with decreasing ganglion density rather than a decrease in the total number of myenteric nitrergic cells. Regional differences in the dynamics of the quantitative changes were revealed. A significant decrease in the nitrergic cell number appeared earlier in the proximal than in the distal segments of the small intestine or in the colon. In contrast, the significant decline of the ganglionic density was first noticed in the colon at the same time.  相似文献   

20.
In this study, we wished to clarify the distribution and co-localization of nitric oxide synthase and NADPH-diaphorase (NADPH-d) in nerve cells, nerve fibres and parenchymal cells in exocrine and endocrine pancreas, and to assess the influence of fixation on the staining pattern obtained. For this purpose, we applied nitric oxide synthase immunocytochemistry and NADPH-d histochemistry to rat and human pancreas under different fixation conditions. Antibodies to neuronal and endothelial nitric oxide synthase were similarly applied. We found complete co-localization of neuronal nitric oxide synthase and NADPH-d in ganglion cells, and in nerve fibres around acini, excretory ducts, blood vessels and in islets of Langerhans of rat and human pancreas. Immunoreactivity for endothelial nitric oxide synthase was co-localized with NADPH-d in endothelial cells. However, in NADPH-d reactive islet and ductal epithelial cells we could detect neither brain nor endothelial nitric oxide synthase immunoreactivity with any fixation protocol applied. There were marked differences in NADPH-d staining of both neurons and parenchymal cells under different fixation conditions. These results indicate the existence of different types of NADPH-d, which are associated or not associated with nitric oxide synthase(s), and which are differently influenced by various fixation procedures in rat and human pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号