首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of metal ion binding on the optical spectroscopic properties and temperature stability of two single tryptophan mutants of chicken skeletal TnC, F78W and F154W, have been examined. The absence of tyrosine and other tryptophan residues allowed the unambiguous assignment of the spectral signal from the introduced Trp residue. Changes in the molar ellipticity values in the far-UV CD spectra of the mutant proteins on metal ion binding were similar to those of wild-type TnC suggesting that the introduction of the Trp residue had no effect on the total secondary structure content. The fluorescence and near-UV absorbance data reveal that, in the apo state, Trp-78 is buried while Trp-154 is exposed to solvent. Additionally, the highly resolved (1)L(b) band of Trp-78 seen in the near-UV absorbance and CD spectra of the apo state of F78W suggest that this residue is likely in a rigid molecular environment. In the calcium-saturated state, Trp-154 becomes buried while the solvent accessibility of Trp-78 increases. The fluorescence emission and near-UV CD of Trp-78 in the N-terminal domain were sensitive to calcium binding at the C-terminal domain sites. Measurements of the temperature stability reveal that events occurring in the N-terminal domain affect the stability of the C-terminal domain and vice versa. This, coupled with the titration data, strongly suggests that there are interactions between the N- and C-terminal domains of TnC.  相似文献   

2.
Intrinsic tryptophans of CRABPI as probes of structure and folding.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native state fluorescence and CD spectra of the predominantly beta-sheet cellular retinoic acid-binding protein I (CRABPI) include contributions from its three tryptophan residues and are influenced by the positions of these residues in the three-dimensional structure. Using a combination of spectroscopic approaches and single Trp-mutants of CRABPI, we have deconvoluted these spectra and uncovered several features that have aided in our analysis of the development of structure in the folding pathway of CRABPI. The emission spectrum of native CRABPI is dominated by Trp 7. Trp 109 is fluorescence-silent due to its interaction with the guanidino group of Arg 111. Although the far-UV CD spectrum of CRABPI is largely determined by the protein's secondary structure, aromatic clustering around Trp 87 and the aromatic-charge interaction between Arg 111 and Trp 109 give rise to a characteristic feature in the CD spectrum at 228 nm. The near-UV CD bands of CRABPI arise largely from additive contributions of the three tryptophan residues. Trp 7 and Trp 87 give a negative CD band at 275 nm. The near-UV CD band from Trp 109 is positive and shifted to longer wavelengths (to 302 nm) due to the charge-aromatic interaction between Arg 111 and Trp 109. Our deconvolution of the equilibrium spectra have been used to interpret kinetic folding experiments monitored by stopped-flow fluorescence. These dynamic experiments suggest the early evolution of a well-populated, hydrophobically collapsed intermediate, which undergoes global rearrangement to form the fully folded structure. The results presented here suggest several additional strategies for dissecting the folding pathway of CRABPI.  相似文献   

3.
Rogers DM  Hirst JD 《Biochemistry》2004,43(34):11092-11102
Electronic transitions in aromatic side chains are responsible for the characteristics of proteins in the near UV. We present the first systematic study of a large number of proteins focused on the accurate calculation of near-UV circular dichroism (CD) spectra. We report new parameter sets derived from ab initio calculations for benzene, phenol, and indole that describe the valence electronic transitions to the (1)L(b), (1)L(a), (1)B(b), and (1)B(a) states in the side chains of amino acids phenylalanine, tyrosine, and tryptophan. CD spectra were calculated, using the matrix method with the new side-chain parameters, for 30 proteins whose CD spectra and crystal structures have been made publicly available. The new parameter sets are fully self-consistent and yield near-UV spectra better than those obtained using previous parameter sets. The mean absolute errors for computed wild-type spectra in the near UV are reduced by a factor of approximately 2. A similiar reduction is found for the near-UV spectra (and difference spectra) of mutants involving aromatic amino acids. Empirical modifications to model vibronic coupling in the side-chain chromophore of phenylalanine offer no overall improvement. Protein CD calculations from first principles coupled with atomic-level modeling enhance the utility and interpretability of CD measurements in the near UV.  相似文献   

4.
There are two tryptophan residues in the lens alphaB-crystallin, Trp9 and Trp60. We prepared two Trp --> Phe substituted mutants, W9F and W60F, for use in a spectroscopic study. The two tryptophan residues contribute to Trp fluorescence and near-ultraviolet circular dichroism (UV CD) differently. The major difference in the near-UV CD is the contribution of 1La of Trp: it is positive in W60F but becomes negative in W9F. Further analysis of the near-UV CD shows an increased intensity in the region of 270-280 nm for W60F, suggesting that the Tyr48 is affected by the W60F mutation. It appears that Trp60 is located in a more rigid environment than Trp9, which agrees with a recent structural model in which Trp60 is in a beta-strand.  相似文献   

5.
Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  相似文献   

6.
To elucidate the roles of tryptophan residues in the structure, stability, and function of Escherichia coli dihydrofolate reductase (DHFR), its five tryptophan residues were replaced by site-directed mutagenesis with leucine, phenylalanine or valine (W22F, W22L, W30L, W47L, W74F, W74L, W133F, and W133V). Far-ultraviolet circular dichroism (CD) spectra of these mutants reveal that exciton coupling between Trp47 and Trp74 strongly affects the peptide CD of wild-type DHFR, and that Trp133 also contributes appreciably. No additivity was observed in the contributions of individual tryptophan residues to the fluorescence spectrum of wild-type DHFR, Trp74 having a dominant effect. These single-tryptophan mutations induce large changes in the free energy of urea unfolding, which showed values of 1.79-7.14 kcal/mol, compared with the value for wild-type DHFR of 6.08 kcal/mol. Analysis of CD and fluorescence spectra suggests that thermal unfolding involves an intermediate with the native-like secondary structure, the disrupted Trp47-Trp74 exciton coupling, and the solvent-exposed Trp30 and Trp47 side chains. All the mutants except W22L (13%) retain more than 50% of the enzyme activity of wild-type DHFR. These results demonstrate that the five tryptophan residues of DHFR play important roles in its structure and stability but do not crucially affect its enzymatic function.  相似文献   

7.
The contribution to the circular dichroism (CD) spectrum made by each of the four Trp residues in the extracellular domain of human tissue factor, sTF (s designates soluble), was determined from difference CD spectra. The individual Trp CD spectra showed that all four residues contributed to the CD spectrum in almost the entire wavelength region investigated (180-305 nm). The sum of the individual spectra of each Trp residue in the near-UV region was qualitatively identical to the wild-type spectrum, clearly demonstrating that the Trp residues are the major contributors to the spectrum in this wavelength region. Trp CD bands interfere with the peptide bands in the far-UV region, leading to uncertainty in the predictions of the amounts of various types of secondary structure. Accordingly, the best prediction of secondary sTF structure content was achieved using a hypothetical Trp-free CD spectrum obtained after subtraction of all individual Trp spectra from the wild-type spectrum. The mutated Trp residues were also exploited as intrinsic probes to monitor the formation of local native-like tertiary structure by kinetic near-UV CD measurements. The global folding reaction was followed in parallel with a novel functional assay that registered the recovery of cofactor activity, i.e. stimulation of the amidolytic activity of Factor VIIa. From these measurements, it was found that sTF appears to regain FVIIa cofactor activity before the final side-chain packing of the Trp residues. The combined kinetic refolding results suggest that the compact asymmetric environments of the individual Trp residues in sTF are formed simultaneously, leading to the conclusion that the native tertiary structure of the whole protein is formed in a cooperative manner.  相似文献   

8.
M Nagai  S Nagatomo  Y Nagai  K Ohkubo  K Imai  T Kitagawa 《Biochemistry》2012,51(30):5932-5941
The aromatic residues such as tryptophan (Trp) and tyrosine (Tyr) in human adult hemoglobin (Hb A) are known to contribute to near-UV circular dichroism (CD) and UV resonance Raman (RR) spectral changes upon the R → T quaternary structure transition. In Hb A, there are three Trp residues per αβ dimer: at α14, β15, and β37. To evaluate their individual contributions to the R → T spectral changes, we produced three mutant hemoglobins in E. coli; rHb (α14Trp→Leu), rHb (β15Trp→Leu), and rHb (β37Trp→His). Near-UV CD and UVRR spectra of these mutant Hbs were compared with those of Hb A under solvent conditions where mutant rHbs exhibited significant cooperativity in oxygen binding. Near-UV CD and UVRR spectra for individual Trp residues were extracted by the difference calculations between Hb A and the mutants. α14 and β15Trp exhibited negative CD bands in both oxy- and deoxy-Hb A, whereas β37Trp showed positive CD bands in oxy-Hb A but decreased intensity in deoxy-form. These differences in CD spectra among the three Trp residues in Hb A were ascribed to surrounding hydrophobicity by examining the spectral changes of a model compound of Trp, N-acetyl-l-Trp ethyl ester, in various solvents. Intensity enhancement of Trp UVRR bands upon the R → T transition was ascribed mostly to the hydrogen-bond formation of β37Trp in deoxy-Hb A because similar UVRR spectral changes were detected with N-acetyl-l-Trp ethyl ester upon addition of a hydrogen-bond acceptor.  相似文献   

9.
We have used frequency domain fluorescence techniques to resolve the component emission spectra for several two tryptophan containing proteins (e.g., horse liver alcohol dehydrogenase, sperm whale apomyoglobin, yeast 3-phosphoglycerate kinase, apoazurin from Alcaligenes denitricans). We have first performed multifrequency phase/modulation measurements and have found the fluorescence of each of these proteins to be described by a double exponential. Then, using phase-sensitive detection and the algorithm of Gratton and Jameson [Gratton, E., & Jameson, D. M. (1985) Anal. Chem. 57, 1694-1697], we have determined the emission spectrum associated with each decay time for these proteins. We have compared these phase-resolved spectra with the fractional contributions of the component fluorophores determined by selective solute quenching experiments. Reasonably good agreement is seen in most cases, which argues that the individual Trp residues emit independently. In the case of apoazurin, however, a negative amplitude is seen for the phase-resolved spectrum of the short-lifetime component. This pattern is consistent with the occurrence of energy transfer from the internal Trp residue to the surface Trp of this protein. We also present multifrequency lifetime measurements, phase-resolved spectra, and solute quenching data for a few protein-ligand complexes, to illustrate the utility of this approach for the study of changes in the fluorescence of proteins.  相似文献   

10.
Conformational changes induced by binding of ligands to cytosolic NADP(+)-specific isocitrate dehydrogenase from lactating bovine mammary gland were assessed using circular dichroism and fluorescence techniques. The secondary structure of isocitrate dehydrogenase, as monitored by CD spectra in the far-UV region, is unaltered by enzyme-ligand interactions; in contrast, dramatic changes occur in the near-UV region (270-290 nm) assigned to tyrosine and/or solvent-exposed tryptophan residues. Both the coenzyme analog, 2'-phosphoadenosine 5'-diphosphoribose, and NADPH have an effect on the CD spectrum which is opposite to that produced by metal complexes of either isocitrate or citrate. A CD band at 292 nm assigned to approximately 2 tryptophan residues in a hydrophobic environment is unchanged by binding of substrate or coenzyme. Approximately 30% of the intrinsic fluorescence of isocitrate dehydrogenase, corresponding to approximately 2 tryptophan residues, is not quenched by acrylamide in the absence of 6.3 M guanidine hydrochloride and remains unquenched in the enzyme-substrate complex. The constancy in the proportion of buried and exposed tryptophan residues implicates tyrosine in the observed near-UV CD spectral changes. Since binding of ligands does not influence quaternary structure (Seery, V.L., and Farrell, H. M., Jr. (1989) Arch. Biochem. Biophys. 274, 453-462), activation of isocitrate dehydrogenase may be related to a substrate-induced conformational transition.  相似文献   

11.
The transition of the colicin E1 channel polypeptide from a water-soluble to membrane-bound state occurs in vitro at acid pH values that are associated with an unfolded channel structure whose properties qualitatively resemble those of a "molten globule," or "compact unfolded," intermediate state. The role of such a state for activity was tested by comparing the pH dependence of channel-induced solute efflux and the amplitude of the near-UV CD spectrum. The requirement of a partly unfolded state for activity was shown by the coincidence of the onset of channel activity measured for 4 different lipid compositions with the decrease in near-UV CD amplitude as a function of pH. Tertiary constraints on the 3 tryptophans of the colicin channel, assayed by the amplitude of the near-UV CD spectrum, are retained over the pH range 3-4 where channel activity could be measured and, as well, at pH 2. In addition, the tryptophan fluorescence emission spectrum is virtually unchanged over the pH range 2-6. The temperature independence of the near-UV spectrum at pH 3-6 up to 70 degrees C implies that the colicin E1 channel polypeptide is more stable than that of colicin A. A transition between 53 and 58 degrees C in the amplitude of the near-UV CD is consistent with preservation of part of the hydrophobic core in a destabilized state at pH 2. Thus, the unfolded state associated with colicin activity at acidic pH has the properties of a "compact unfolded" state, having some, but not all of the properties of a "molten globule."(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The self-association properties of recombinant DNA derived human relaxin, and porcine relaxin isolated from porcine ovaries, have been studied by sedimentation equilibrium analytical ultracentrifugation and circular dichroism (CD). The human relaxin ultracentrifuge data were adequately defined by a monomer-dimer self-association model with an association constant of approximately 6 x 10(5) M-1, whereas porcine relaxin was essentially monomeric in solution. An approximate 5-fold increase in weight fraction of human relaxin monomer elicited by dilution of the protein resulted in no change in the far-UV CD spectrum at 220 nm. In contrast, after the same increase in weight fraction of monomer, the near-UV circular dichroism spectra for human relaxin exhibited a significant decrease in the amplitude for the CD bands near 277 and 284 nm. These CD bands, which may be assigned to the lone tyrosine in human relaxin, are superimposed on a broad envelope that is probably due to the three disulfide chromophores. Although both the human and porcine proteins contain two tryptophan residues, the near-UV CD spectra exhibit only a broad shoulder near 295 nm rather than the strong CD bands often found for tryptophan. Moreover, there is little change in this broad band after dilution of human relaxin to concentrations that resulted in a 4-fold increase in monomer weight fraction. These data suggest that dissociation of the human relaxin dimer to monomer is not accompanied by large overall changes in secondary structure or alteration in the average tryptophan environment, whereas there is a significant change in the tyrosine environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Time-resolved and steady-state fluorescence have been used to resolve the heterogeneous emission of single-tryptophan-containing mutants of Trp repressors W19F and W99F into components. Using iodide as the quencher, the fluorescence-quenching-resolved spectra (FQRS) have been obtained The FQRS method shows that the fluorescence emission of Trp99 can be resolved into two component spectra characterized by maxima of fluorescence emission at 338 and 328 nm. The redder component is exposed to the solvent and participates in about 21% of the total fluorescence emission of TrpR W19F. The second component is inacessible to iodide, but is quenched by acrylamide. The tryptophan residue 19 present in TrpR W99F can be resolved into two component spectra using the FQRS method and iodide as a quencher. Both components of Trp19 exhibit similar maxima of emission at 322–324 nm and both are quenchable by iodide. The component more quenchable by iodide participates in about 38% of the total TrpR W99F emission. The fluorescence lifetime measurements as a function of iodide concentration support the existence of two classes of Trp99 and Trp19 in the Trp repressor. Our results suggest that the Trp aporepressor can exist in the ground state in two distinct conformational states which differ in the microenvironment of the Trp residues.Abbreviations TrpR tryptophan aporepressor fromE. coli - TrpR W19F TrpR mutant with phenylalanine substituted for tryptophan at position 19 - TrpR W99F TrpR mutant with phenylalanine substituted for tryptophan at position 99 - FQRS fluorescence-quenching-resolved spectra - FPLC fast protein liquid chromatography  相似文献   

14.
The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chromatography in a chloroform/methanol/H(2)O (4:4:1) solvent system. Circular dichroism analysis indicated that the alpha-helical content of ImmE1 is approximately 80% in 1-butanol or 2,2,2-trifluoroethanol, consistent with a previous membrane-folding model with three extended hydrophobic transmembrane helical domains, H1-H3. Each of these extended hydrophobic domains contains a centrally located single Cys residue that could be used as a probe of protein structure. The presence of tertiary structure of purified ImmE1 in a solvent of mixed polarity, chloroform/methanol/H(2)O (4:4:1) was demonstrated by (i) the constraints on Tyr residues shown by the amplitude of near-UV circular dichroism spectra in the wavelength interval, 270-285 nm; (ii) the correlation between the near-UV Tyr CD spectrum of single and double Cys-to-X mutants of the Imm protein and their in vivo activity; (iii) the upfield shift of methyl groups in a 1D NMR spectrum, a 2D- HSQC NMR spectrum of ImmE1 in the mixed polarity solvent mixture, and a broadening and disappearance of the indole (1)H proton resonance from Trp94 in H3 by a spin label attached to Cys16 in the H2 hydrophobic domain; (iv) near-UV circular dichroism spectra with a prominent ellipticity band centered at 290 nm from a single Trp inserted into the extended hydrophobic domains. It was concluded that the colicin E1 immunity protein adopts a folded conformation in chloroform/methanol/H(2)O (4:4:1) that is stabilized by helix-helix interactions. Analysis of the probable membrane folding topology indicated that several Tyr residues in the bilayer region of the three transmembrane helices could contribute to the near-UV CD spectrum through helix-helix interactions.  相似文献   

15.
ATP binding to myosin subfragment 1 (S1) induces an increase in tryptophan fluorescence. Chymotryptic rabbit skeletal S1 has 5 tryptophan residues (Trp113, 131, 440, 510 and 595), and therefore the identification of tryptophan residues perturbed by ATP is quite complex. To solve this problem we resolved the complex fluorescence spectra into log-normal and decay-associated components, and carried out the structural analysis of the microenvironment of each tryptophan in S1. The decomposition of fluorescence spectra of S1 and S1-ATP complex revealed 3 components with maxima at ca. 318, 331 and 339-342 nm. The comparison of structural parameters of microenvironment of 5 tryptophan residues with the same parameters of single-tryptophan-containing proteins with well identified fluorescence properties applying statistical method of cluster analysis, enabled us to assign Trp595 to 318 nm, Trp440 to 331 nm, and Trp 13, 131 and 510 to 342 nm spectral components. ATP induced an almost equal increase in the intensities of the intermediate (331 nm) and long-wavelength (342 nm) components, and a small decrease in the short component (318 nm). The increase in the intermediate component fluorescence most likely results from an immobilization of some quenching groups (Met437, Met441 and/or Arg444) in the environment of Trp440. The increase in the intensity and a blue shift of the long component might be associated with conformational changes in the vicinity of Trp510. However, these conclusions can not be extended directly to the other types of myosins due to the diversity in the tryptophan content and their microenvironments.  相似文献   

16.
An UV absorption and CD study of intestinal fatty acid-binding protein is presented. Since there are only two Trp residues in the molecule, two single-Trp mutants were prepared to deconvolute their signals. The individual contribution of the eight Phe and four Tyr residues was not established; however, Phe global contribution is relatively free of interferences from the other chromophores and was observed directly. CD spectra showed that Phe vibronic structure was unusually sharp and seems to monitor very specific details in the three-dimensional structure. The global signal from Tyr was assigned only approximately due to band broadening and overlapping. At the upper end of the CD spectrum, strong positive (1)L(b) Trp transitions from Trp 82 and strong negative (1)L(b) Trp transitions from Trp 6 were observed. (1)L(a) transitions were overall weak, positive for Trp 82 and negative for Trp 6, nearly cancelling each other out in the final spectrum. The above assignment is of practical and fundamental interest to monitor folding, binding, and molecular dynamics down to microdomain resolution. The assignment of Trp bands allowed comparison with previous data from CRABP1, another member of the IFABP family with 28% identical residues. It was found that structural homology extends beyond sequence and tertiary fold to include optical properties of equivalent Trp residues in the structure.  相似文献   

17.
The absorption spectra of N-acetyl-l-tryptophanamide in various solvents were resolved into the sums of the 1La and 1Lb components. The relative intensities of the 0-0 transitions of the 1Lb bands correlate linearly with the solvent polarity values (). A novel strategy that uses a set of the experimental 1Lb bands was employed to resolve the near-UV circular dichroism (CD) spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence and structural data of TL. Analysis of the 1Lb bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The dimethyl sulfoxide (DMSO)-like 1Lb band of Trp CD spectra may be used as a “fingerprint” to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method, which we call site-directed circular dichroism, is broadly applicable to various proteins to obtain the position-specific data.  相似文献   

18.
Murray TA  Foster MP  Swenson RP 《Biochemistry》2003,42(8):2317-2327
A mechanism has been proposed for the binding of flavin mononucleotide (FMN) and riboflavin to the apoflavodoxin from Desulfovibrio vulgaris [Murray, T. A., and Swenson, R. P. (2003) Biochemistry 42, 2307-2316]. In this model, the binding of the flavin isoalloxazine ring is dependent on the presence of a phosphate moiety in the phosphate-binding subsite, suggesting a cooperative interaction between that region and the ring-binding subsite. In the absence of inorganic phosphate, FMN can bind through the initial association of its 5'-phosphate group in the phosphate-binding subsite followed by insertion of the flavin ring. Because riboflavin lacks the 5'-phosphate group, it is unable to bind to this apoprotein in the absence of inorganic phosphate in solution. However, inorganic phosphate can enhance the rate of ring binding by occupying the phosphate-binding subsite. In this paper, NMR, near-UV circular dichroism (CD), and fluorescence spectroscopy provide evidence for a phosphate-induced conformational change within the isoalloxazine ring-binding subsite. Phosphate-dependent changes in the chemical shifts of 22 amide groups were observed in (1)H-(15)N HSQC NMR spectra. The majority of these groups are proximal to the phosphate-binding subsite or the loops that constitute the isoalloxazine ring-binding site. Also, a phosphate-dependent change in the environment or position of the Trp60 side chain was apparent in the NMR data and was confirmed by associated changes in the near-UV CD and tryptophan fluorescence spectra when compared to the spectra of the W60A mutant. These data suggest that phosphate, either the 5'-phosphate of the FMN or inorganic phosphate from solution, facilitates the movement of the side chain of Trp60 out of the isoalloxazine ring-binding site and other associated conformational changes, creating a population of apoflavodoxin that is capable of binding the isoalloxazine ring. This conformational switch may explain why some apoflavodoxins cannot bind riboflavin and also supports the "aromatic gate" model proposed from the crystal structure of the Anabaena apoflavodoxin [Genzor, C. G., Perales-Alcon, A., Sancho, J., and Romero, A. (1996) Nat. Struct. Biol. 3, 329-332].  相似文献   

19.
The slow folding of a single tryptophan-containing mutant of barstar has been studied in the presence of 2 M urea at 10 degrees C, using steady state and time-resolved fluorescence methods and far and near-UV CD measurements. The protein folds in two major phases: a fast phase, which is lost in the dead time of measurement during which the polypeptide collapses to a compact form, is followed by a slow observable phase. During the fast phase, the rotational correlation time of Trp53 increases from 2.2 ns to 7.2 ns, and its mean fluorescence lifetime increases from 2.3 ns to 3.4 ns. The fractional changes in steady-state fluorescence, far-UV CD, and near-UV CD signals, which are associated with the fast phase are, respectively, 36 %, 46 %, and 16 %. The product of the fast phase can bind the hydrophobic dye ANS. These observations together suggest that the folding intermediate accumulated at the end of the fast phase has: (a) about 20 % of the native-state secondary structure, (b) marginally formed or disordered tertiary structure, (c) a water-intruded and mobile protein interior; and (d) solvent-accessible patches of hydrophobic groups. Measurements of the anisotropy decay of Trp53 suggest that it undergoes two types of rotational motion in the intermediate: (i) fast (tau(r) approximately 1 ns) local motion of its indole side-chain, and (ii) a slower (tau(r) approximately 7.2 ns) motion corresponding to global tumbling of the entire protein molecule. The ability of the Trp53 side-chain to undergo fast local motion in the intermediate, but not in the fully folded protein where it is completely buried in the hydrophobic core, suggests that the core of the intermediate is still poorly packed. The global tumbling time of the fully folded protein is faster at 5.6 ns, suggesting that the volume of the intermediate is 25 % more than that of the fully folded protein. The rate of folding of this intermediate to the native state, measured by steady-state fluorescence, far-UV CD, and near-UV CD, is 0.07(+/-0.01) min(-1) This rate compares to a rate of folding of 0.03(+/-0.005) min(-1), determined by double-jump experiments which monitor directly formation of native protein; and to a rate of folding of 0.05 min(-1), when determined from time-resolved anisotropy measurements of the long rotational correlation time, which relaxes from an initial value of 7.2 ns to a final value of 5. 6 ns as the protein folds. On the other hand, the amplitude of the short correlation time decreases rapidly with a rate of 0.24(+/-0.06) min(-1). These results suggest that tight packing of residues in the hydrophobic core occurs relatively early during the observable slow folding reaction, before substantial secondary and tertiary structure formation and before final compaction of the protein.  相似文献   

20.
Conformational alterations of bovine hemoglobin (Hb) upon sequential addition of glyoxal over a range of 0–90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG) state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD) and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT) fluorescence and red shifted Congo Red (CR) absorbance. On incubating Hb with 30% v/v glyoxal for 0–20 days, advanced glycation end products (AGEs) were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington''s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号