首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The excessive use of areca nut and/or tobacco may induce the production of free radicals and reactive oxygen species, which affect the lipid contents of the cell membrane and are possibly involved in tumorigenic processes in the oral cavity. The aim of this study was to investigate the therapeutic efficacy of fenofibrate (0.1% or 0.3%, w/w), a ligand of the peroxisome proliferator-activated receptor alpha (PPARα), in a 4-nitroquinoline 1-oxide (4-NQO)/arecoline-induced oral cancer mouse model. The carcinogen, 4-NQO/arecoline, was administrated to C57BL/6JNarl mice for 8 weeks followed by fenofibrate treatment for 12 or 20 weeks. After 28 weeks, changes in serum lipids, the multiplicity of tumor lesions, and tumor sizes were determined together with changes in the immunohistochemical expressions of PPARα, acetyl-coenzyme A carboxylase (ACC), the epidermal growth factor receptor (EGFR), and cyclooxygenase-2 (COX2). The results showed that when compared to the 4-NQO/arecoline only group, 0.3% fenofibrate treatment increased serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. 0.3% fenofibrate treatment suppressed the incidence rate of tongue lesions, reduced the multiplicity of squamous cell carcinoma (SCC), decreased the tumor size, and increased the immunoreactivity of EGFR and COX2 in oral dysplasia but decreased EGFR and COX2 expressions in SCC. These findings indicated that fenofibrate reduced the tumor incidence rate and suppressed the tumor progression into SCC and that these molecular events might be linked to the EGFR and COX2 regulatory pathways. We suggest that fenofibrate provides a new strategy for preventing oral tumor progression.  相似文献   

2.
3.
Hardie DG 《FEBS letters》2008,582(1):81-89
Obesity, type 2 diabetes and the metabolic syndrome are disorders of energy balance, which the AMP-activated protein kinase (AMPK) regulates both at the cellular and whole body levels. AMPK switches cells from an anabolic state where nutrients are taken up and stored, to a catabolic state where they are oxidized. Drugs that activate AMPK indirectly (metformin and thiazolidinediones) are now the mainstay of treatment for type 2 diabetes, but more direct AMPK activators may have fewer side effects. However, activating mutations in AMPK can cause heart disease, and it will be important to look for adverse effects in the heart.  相似文献   

4.
Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-d-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors. Many pharmacological compounds have been identified that affect the activity of NMDA receptors, including neurosteroids. This review summarizes our knowledge about molecular mechanisms underlying the neurosteroid action at NMDA receptors as well as about the action of neurosteroids in animal models of human diseases.  相似文献   

5.
A link between cellular uptake of high density lipoprotein (HDL) and regulation of sterol regulatory element-binding protein-1 (SREBP-1) was investigated in vitro. HDL decreased nuclear SREBP-1 levels as well as SREBP-1 target gene expression in HepG2 and HEK293 cells. However, HDL did not repress an exogenously expressed, constitutively active form of SREBP-1. HDL increased cellular cholesterol levels, and cellular cholesterol depletion by methyl-β-cyclodextrin abolished the effects of HDL. These results suggest that HDL inhibits the activation of SREBP-1 through a cholesterol-dependent mechanism, which may play an important role in regulating lipid synthetic pathways mediated by SREBP-1.  相似文献   

6.
Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. We showed that genistein induced the expression of genes of fatty acid oxidation in the skeletal muscle of Zucker fa/fa rats and in leptin receptor (ObR)-silenced C2C12 myotubes through AMPK phosphorylation. Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.  相似文献   

7.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

8.
We report here studies that integrate data of respiration rate from mouse skeletal muscle in response to leptin and pharmacological interference with intermediary metabolism, together with assays for phosphatidylinositol 3-kinase (PI3K) and AMP-activated protein kinase (AMPK). Our results suggest that the direct effect of leptin in stimulating thermogenesis in skeletal muscle is mediated by substrate cycling between de novo lipogenesis and lipid oxidation, and that this cycle requires both PI3K and AMPK signaling. This substrate cycling linking glucose and lipid metabolism to thermogenesis provides a novel thermogenic mechanism by which leptin protects skeletal muscle from excessive fat storage and lipotoxicity.  相似文献   

9.
Polyunsaturated fatty acids and their esters are known to be susceptible to free radical-mediated oxidation, whereas cholesterol is thought to be more resistant to oxidation. In fact, it has been observed that in the case of plasma lipid peroxidation, the amount of oxidation products of polyunsaturated fatty acids such as linoleic acid was higher than that of cholesterol. In contrast, during oxidative stress-induced cellular lipid peroxidation, oxidation products of cholesterol such as 7-hydroxycholesterol (7-OHCh) were detected in greater amounts than those of linoleates such as hydroxyoctadecadienoic acid (HODE). There are several forms of oxidation products of cholesterol and linoleates in vivo, namely, hydroperoxides, as well as the hydroxides of both the free and ester forms of cholesterol and linoleates. To evaluate these oxidation products, a method used to determine the lipid oxidation products after reduction and saponification was developed. With this method, several forms of oxidation products of cholesterol and linoleates are measured as total 7-OHCh (t7-OHCh) and total HODE (tHODE), respectively. During free radical-mediated lipid peroxidation in plasma, the amount of tHODE was 6.3-fold higher than that of t7-OHCh. In contrast, when Jurkat cells were exposed to free radicals, the increased amount of cellular t7-OHCh was 5.7-fold higher than that of tHODE. Higher levels of t7-OHCh than those of tHODE have also been observed in selenium-deficient Jurkat cells and glutamate-treated neuronal cells. These results suggest that, in contrast to plasma oxidation, cellular cholesterol is more susceptible to oxidation than cellular linoleates. Collectively, cholesterol oxidation products at the 7-position may be a biomarker of cellular lipid peroxidation.  相似文献   

10.
Cardiovascular disease is the biggest killer globally and the principal contributing factor to the pathology is atherosclerosis; a chronic, inflammatory disorder characterized by lipid and cholesterol accumulation and the development of fibrotic plaques within the walls of large and medium arteries. Macrophages are fundamental to the immune response directed to the site of inflammation and their normal, protective function is harnessed, detrimentally, in atherosclerosis. Macrophages contribute to plaque development by internalizing native and modified lipoproteins to convert them into cholesterol-rich foam cells. Foam cells not only help to bridge the innate and adaptive immune response to atherosclerosis but also accumulate to create fatty streaks, which help shape the architecture of advanced plaques. Foam cell formation involves the disruption of normal macrophage cholesterol metabolism, which is governed by a homeostatic mechanism that controls the uptake, intracellular metabolism, and efflux of cholesterol. It has emerged over the last 20 years that an array of cytokines, including interferon-γ, transforming growth factor-β1, interleukin-1β, and interleukin-10, are able to manipulate these processes. Foam cell targeting, anti-inflammatory therapies, such as agonists of nuclear receptors and statins, are known to regulate the actions of pro- and anti-atherogenic cytokines indirectly of their primary pharmacological function. A clear understanding of macrophage foam cell biology will hopefully enable novel foam cell targeting therapies to be developed for use in the clinical intervention of atherosclerosis.  相似文献   

11.
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein–lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

12.
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.  相似文献   

13.
Severe rheumatoid cachexia is associated with pronounced loss of muscle and fat mass in patients with advanced rheumatoid arthritis. This condition is associated with dyslipidemia and predisposition to cardiovascular diseases. Circulating levels of triglycerides (TG) and free fatty acids (FFA) have not yet been consistently defined in severe arthritis. Similarly, the metabolism of these lipids in the arthritic liver has not yet been clarified. Aiming at filling these gaps this study presents a characterization of the circulating lipid profile and of the fatty acids uptake and metabolism in perfused livers of rats with adjuvant-induced arthritis. The levels of TG and total cholesterol were reduced in both serum (10–20%) and liver (20–35%) of arthritic rats. The levels of circulating FFA were 40% higher in arthritic rats, possibly in consequence of cytokine-induced adipose tissue lipolysis. Hepatic uptake and oxidation of palmitic and oleic acids was higher in arthritic livers. The phenomenon results possibly from a more oxidized state of the arthritic liver. Indeed, NADPH/NADP+ and NADH/NAD+ ratios were 30% lower in arthritic livers, which additionally presented higher activities of the citric acid cycle driven by both endogenous and exogenous FFA. The lower levels of circulating and hepatic TG possibly are caused by an increased oxidation associated to a reduced synthesis of fatty acids in arthritic livers. These results reveal that the lipid hepatic metabolism in arthritic rats presents a strong catabolic tendency, a condition that should contribute to the marked cachexia described for arthritic rats and possibly for the severe rheumatoid arthritis.  相似文献   

14.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

15.
StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis.  相似文献   

16.
Liver is the major organ that regulates whole body cholesterol metabolism. Disrupted hepatic cholesterol homeostasis contributes to the pathogenesis of nonalcoholic steatohepatitis, dyslipidemia, atherosclerosis, and cardiovascular diseases. Hepatic bile acid synthesis is the major catabolic mechanism for cholesterol elimination from the body. Furthermore, bile acids are signaling molecules that regulate liver metabolism and inflammation. Autophagy is a highly-conserved lysosomal degradation mechanism, which plays an essential role in maintaining cellular integrity and energy homeostasis. In this review, we discuss emerging evidence linking hepatic cholesterol and bile acid metabolism to cellular autophagy activity in hepatocytes and macrophages, and how these interactions may be implicated in the pathogenesis and treatment of fatty liver disease and atherosclerosis.  相似文献   

17.
18.

Objective

To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).

Methods

Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17?weeks.

Results

Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.

Conclusion

Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.  相似文献   

19.
20.
StAR family proteins, including StarD4, play a key role in steroidogenesis by transporting cholesterol (Ch) into mitochondria for conversion to pregnenolone. Using a model system consisting of peroxidized cholesterol (7α-OOH)-containing liposomes as donors, we showed that human recombinant StarD4 accelerates 7α-OOH transfer to isolated liver mitochondria, and to a greater extent than Ch transfer. StarD4 had no effect on transfer of non-oxidized or peroxidized phosphatidylcholine, consistent with sterol ring specificity. StarD4-accelerated 7α-OOH transfer to mitochondria resulted in greater susceptibility to free radical lipid peroxidation and loss of membrane potential than in a non-StarD4 control. The novel implication of these findings is that in oxidative stress states, inappropriate StAR-mediated trafficking of peroxidized Ch in steroidogenic tissues could result in damage and dysfunction selectively targeted to mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号