首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5- bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.  相似文献   

2.
Terminal cell differentiation entails definitive withdrawal from the cell cycle. Although most of the cells of an adult mammal are terminally differentiated, the molecular mechanisms preserving the postmitotic state are insufficiently understood. Terminally differentiated skeletal muscle cells, or myotubes, are a prototypic terminally differentiated system. We previously identified a mid-G(1) block preventing myotubes from progressing beyond this point in the cell cycle. In this work, we set out to define the molecular basis of such a block. It is shown here that overexpression of highly active cyclin E and cdk2 in myotubes induces phosphorylation of pRb but cannot reactivate DNA synthesis, underscoring the tightness of cell cycle control in postmitotic cells. In contrast, forced expression of cyclin D1 and wild-type or dominant-negative cdk4 in myotubes restores physiological levels of cdk4 kinase activity, allowing progression through the cell cycle. Such reactivation occurs in myotubes derived from primary, as well as established, C2C12 myoblasts and is accompanied by impairment of muscle-specific gene expression. Other terminally differentiated systems as diverse as adipocytes and nerve cells are similarly reactivated. Thus, the present results indicate that the suppression of cyclin D1-associated kinase activity is of crucial importance for the maintenance of the postmitotic state in widely divergent terminally differentiated cell types.  相似文献   

3.
During differentiation, skeletal muscle cells withdraw from the cell cycle and fuse into multinucleated myotubes. Unlike quiescent cells, however, these cells cannot be induced to reenter S phase by means of growth factor stimulation. The studies reported here document that both the retinoblastoma protein (Rb) and the cyclin-dependent kinase (cdk) inhibitor p21 contribute to this unresponsiveness. We show that the inactivation of Rb and p21 through the binding of the adenovirus E1A protein leads to the induction of DNA replication in differentiated muscle cells. Moreover, inactivation of p21 by E1A results in the restoration of cyclin E-cdk2 activity, a kinase made nonfunctional by the binding of p21 and whose protein levels in differentiated muscle cells is relatively low in amount. We also show that restoration of kinase activity leads to the phosphorylation of Rb but that this in itself is not sufficient for allowing differentiated muscle cells to reenter the cell cycle. All the results obtained are consistent with the fact that Rb is functioning downstream of p21 and that the activities of these two proteins may be linked in sustaining the postmitotic state.  相似文献   

4.
In adult vertebrates, most cells are not in the cell cycle at any one time. Physiological nonproliferation states encompass reversible quiescence and permanent postmitotic conditions such as terminal differentiation and replicative senescence. Although these states appear to be attained and maintained quite differently, they might share a core proliferation-restricting mechanism. Unexpectedly, we found that all sorts of nonproliferating cells can be mitotically reactivated by the sole suppression of histotype-specific cyclin-dependent kinase (cdk) inhibitors (CKIs) in the absence of exogenous mitogens. RNA interference-mediated suppression of appropriate CKIs efficiently triggered DNA synthesis and mitosis in established and primary terminally differentiated skeletal muscle cells (myotubes), quiescent human fibroblasts, and senescent human embryo kidney cells. In serum-starved fibroblasts and myotubes alike, cell cycle reactivation was critically mediated by the derepression of cyclin D-cdk4/6 complexes. Thus, both temporary and permanent growth arrest must be actively maintained by the constant expression of CKIs, whereas the cell cycle-driving cyclins are always present or can be readily elicited. In principle, our findings could find wide application in biotechnology and tissue repair whenever cell proliferation is limiting.  相似文献   

5.
Viral oncoproteins that inactivate the retinoblastoma tumor suppressor protein (pRb) family both block skeletal muscle differentiation and promote cell cycle progression. To clarify the dependence of terminal differentiation on the presence of the different pRb-related proteins, we have studied myogenesis using isogenic primary fibroblasts derived from mouse embryos individually deficient for pRb, p107, or p130. When ectopically expressed in fibroblasts lacking pRb, MyoD induces an aberrant skeletal muscle differentiation program characterized by normal expression of early differentiation markers such as myogenin and p21, but attenuated expression of late differentiation markers such as myosin heavy chain (MHC). Similar defects in MHC expression were not observed in cells lacking either p107 or p130, indicating that the defect is specific to the loss of pRb. In contrast to wild-type, p107- deficient, or p130-deficient differentiated myocytes that are permanently withdrawn from the cell cycle, differentiated myocytes lacking pRb accumulate in S and G2 phases and express extremely high levels of cyclins A and B, cyclin-dependent kinase (Cdk2), and Cdc2, but fail to readily proceed to mitosis. Administration of caffeine, an agent that removes inhibitory phosphorylations on inactive Cdc2/cyclin B complexes, specifically induced mitotic catastrophe in pRb-deficient myocytes, consistent with the observation that the majority of pRb- deficient myocytes arrest in S and G2. Together, these findings indicate that pRb is required for the expression of late skeletal muscle differentiation markers and for the inhibition of DNA synthesis, but that a pRb-independent mechanism restricts entry of differentiated myocytes into mitosis.  相似文献   

6.
To investigate the requirement for pRb in myogenic differentiation, a floxed Rb allele was deleted either in proliferating myoblasts or after differentiation. Myf5-Cre mice, lacking pRb in myoblasts, died immediately at birth and exhibited high numbers of apoptotic nuclei and an almost complete absence of myofibers. In contrast, MCK-Cre mice, lacking pRb in differentiated fibers, were viable and exhibited a normal muscle phenotype and ability to regenerate. Induction of differentiation of Rb-deficient primary myoblasts resulted in high rates of apoptosis and a total inability to form multinucleated myotubes. Upon induction of differentiation, Rb-deficient myoblasts up-regulated myogenin, an immediate early marker of differentiation, but failed to down-regulate Pax7 and exhibited growth in low serum conditions. Primary myoblasts in which Rb was deleted after expression of differentiated MCK-Cre formed normal multinucleated myotubes that did not enter S-phase in response to serum stimulation. Therefore, Rb plays a crucial role in the switch from proliferation to differentiation rather than maintenance of the terminally differentiated state.  相似文献   

7.
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.  相似文献   

8.
9.
10.
11.
Withdrawal from the cell cycle is an essential aspect of vertebrate muscle differentiation and requires the retinoblastoma (Rb) protein that inhibits expression of genes needed for cell cycle entry. It was shown recently that cultured myotubes derived from the Rb−/−mouse reenter the cell cycle after serum stimulation (Schneider, J.W., W. Gu, L. Zhu, V. Mahdavi, and B. Nadal-Ginard. 1994. Science (Wash. DC). 264:1467– 1471). In contrast with other vertebrates, adult urodele amphibians such as the newt can regenerate their limbs, a process involving cell cycle reentry and local reversal of differentiation. Here we show that myotubes formed in culture from newt limb cells are refractory to several growth factors, but they undergo S phase after serum stimulation and accumulate 4N nuclei. This response to serum is inhibited by contact with mononucleate cells. Despite the phenotypic parallel with Rb−/− mouse myotubes, Rb is expressed in the newt myotubes, and its phosphorylation via cyclin-dependent kinase 4/6 is required for cell cycle reentry. Thus, the postmitotic arrest of urodele myotubes, although intact in certain respects, can be undermined by a pathway that is inactive in other vertebrates. This may be important for the regenerative ability of these animals.  相似文献   

12.
Cell cycle reentry and dedifferentiation of postmitotic cells are important aspects of the ability of an adult newt and other urodele amphibians to regenerate various tissues and appendages [1]. In contrast to their mammalian counterparts, newt A1 myotubes are able to reenter S phase after serum stimulation of a pathway leading to phosphorylation of the retinoblastoma protein, pRb [2]. The activity in serum is not due to mitogenic growth factors but is generated indirectly by the activation of thrombin and subsequent proteolysis [3]. In this paper we describe the formation of interspecies hybrid (heterokaryon) myotubes by the fusion of mouse C2C12 [4] and newt A1 [5, 6] myogenic cells. The C2C12 nuclei reenter the cell cycle upon serum stimulation of the hybrids, while C2C12 homokaryon myotubes remain arrested under these conditions. These findings indicate that the postmitotic arrest of the mouse nuclei is undermined by the pathway activated in the newt cytoplasm. The hybrid myotubes provide a new model for the manipulation of the postmitotic arrest in both mammalian and newt differentiated cells.  相似文献   

13.
The inner membrane-bound protein Ras integrates various extracellular signals that are subsequently communicated from the cytoplasm to the nucleus via the Raf/MEK/MAPK cascade. Here we show that the retinoblastoma protein pRb, previously reported to be a nuclear target of this pathway, can in turn influence the activation state of Ras. Rb-deficient fibroblasts display elevated levels (up to 30-fold) of activated Ras during G(1). Expression of wild-type pRb or a number of pRb mutants defective in E2F regulation reverses this effect. We provide evidence that the mid-G(1) activation of Ras in Rb-deficient cells, which occurs at the level of guanine nucleotide binding, differs from that of epidermal growth factor-induced stimulation of Ras, being dependent on protein synthesis. The aberrant levels of Ras activity associated with loss of pRb may be responsible for the differentiation defects in Rb-deficient cells, because suppression of Ras activity in Rb(-/-) fibroblasts restores the transactivation function of MyoD and the expression of a late marker of skeletal muscle differentiation. These data suggest that nuclear-cytoplasmic communication between pRb and Ras is bidirectional.  相似文献   

14.
15.
Neuregulins comprise a group of growth factor proteins that regulate the differentiation of skeletal muscle. Here, we report that neuregulins are regulators of myogenic differentiation and stimulate mitogenesis in L6 skeletal myoblasts. The mitogenic response to neuregulin-1 was differentiation-dependent and observed only in aligned, differentiating cells. Treatment of these cells with neuregulin-1 increased [3H]thymidine incorporation and cell proliferation by 2- to 5-fold, while a minimal increase was seen in proliferating myoblasts. Neuregulin-1 did not induce DNA synthesis in fused, multinucleated myotubes. The increased DNA synthesis correlated with downregulation of myogenin and inhibition of myoblast fusion and myotube formation. These data suggest that neuregulins may regulate skeletal myogenesis in vivo and that this regulation is dependent on the state of differentiation of the myocytes.  相似文献   

16.
17.
MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.  相似文献   

18.
19.
20.
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号