首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of new antitumor drug, spirobromine, a derivative of dispirotripiperazine, on DNA synthesis in tumor cells and organs at different times after its injection into mice with P388 leukemia has been studied. The duration of DNA synthesis inhibition in tumor cells was found to correlate with spirobromine antitumor activity. A certain selectivity of action of the studied compound on DNA synthesis in P 388 leukemia cells as compared to the action on DNA synthesis in bone marrow, small intestine, spleen and liver of tumor animals was observed.  相似文献   

2.
Leukemia L1210 cells with acquired resistance to 1-methyl-1-nitrosourea (MNU) (L1210/MNU) and 1.3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (L1210/BCNU) were developed from leukemia L1210 cells sensitive to these drugs (L1210/0). The modal chromosome number of leukemia L1210/MNU and L1210/BCNU cells increases from 40 (L1210/0) to 41. It was shown that in leukemia L1210/MNU cells the inhibition of DNA synthesis after MNU administration in a therapeutic dose (80 mg/kg) is lasted within 24 hours, while that in leukemia L1210/0 cell--within 96 hours. After administration of BCNU (20 mg/kg) inhibition of DNA synthesis in leukemia L1210/BCNU cells reached of 50% of control in comparison with practically complete inhibition of DNA synthesis in leukemia L1210/0 cells. Centrifugation on alkaline sucrose density gradients revealed no differences in the rate of sedimentation of leukemia L1210/0, L1210/MNU and L1210/BCNU cell lysates. After 1 hour treatment with MNU of mice bearing L1210/MNU and L1210/0 leukemia cells single-strand breaks in DNA were determined. After 4 hours these strand-breaks retained in leukemia L1210/0 cells, but were eliminated in leukemia L1210/MNU cells. Administration of BCNU to mice with leukemia L1210/0 and L1210/BCNU cells resulted in both cases in the production of DNA aggregates. There is no complete cross-resistance between MNU and BCNU which allows a substitution of these drugs providing for the increase in their therapeutic efficiency.  相似文献   

3.
The damage of DNA structure and synthesis in murine leukemia L1210 cells upon single administration in therapeutic doses of antitumour agents of N-nitrosourea type, such as 1-methyl-1-nitrosourea (MNU) and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was studied. MNU and BCNU were characterized by stronger inhibitory effects on de novo DNA synthesis compared to additional pathway of DNA synthesis in leukemia L1210 cells in vivo. Centrifugation in alkaline sucrose density gradients of L1210 cell lysates has revealed persistent single-strand breaks and alkaline-labile sites in newly replicated DNA. Parental DNA structure was more stable to damaging drug effects than that of newly replicated DNA. The results are consistent with our previous data on the differences in the mechanisms of MNU and BCNU action and the absence of complete cross resistance between the drugs.  相似文献   

4.
Using centrifugation of the nucleoid in a neutral sucrose gradient, the damages in the secondary structure of DNA and the activity of repair enzymes, such as DNA-polymerases alpha and beta and poly(ADP-riboso) polymerase, induced by 1-methyl-nitrosourea (MNU) and 1.3-bis (2-chloroethyl)-1-nitrosourea (BCNU) injected at maximal nonlethal single doses to mice bearing parent leukemia cells (L1210/0) and resistant to MNU and BCNU leukemia L1210 cells (L1210/MNU and L1210/BCNU), were studied. The MNU-induced production of single-strand breaks in L1210/0 and L1210/MNU cells was more conspicuous in newly replicated DNA than in those in preexisting DNA. A more fast repair of the damages in newly replicated DNA was detected in L1210/BCNU and especially in L1210/MNU leukemia cells as compared with L1210/0 cells. The data obtained suggest that there are prone errors in the repair of DNA template, since most of the single-strand breaks were revealed in the newly replicated DNA synthesized on the repaired DNA. The repair of DNA damages in L1210/BCNU and especially in L1210/MNU cells was accompanied by the activation of DNA-polymerases alpha and beta and poly(ADP-riboso)polymerase. Both DNA-polymerases--alpha and beta--were shown to be involved in repair of DNA damages induced by MNU and only DNA-polymerase beta was involved in the repair of damages induced by BCNU.  相似文献   

5.
4 repair-deficient (Mer-) and 2 repair-proficient (Mer+) lines of SV40-transformed human fibroblasts were assayed for colony-forming ability after treatment with MNNG, methyl methanesulfonate (MMS), 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (HECNU). The sensitivities to MMS, BCNU and HECNU of these SV40-transformed lines were similar to those of comparably treated human tumor cells observed previously. However, unlike human tumor lines, whose post-MNNG survival is strongly dependent upon Mer phenotype, SV40-transformed lines showed a lack of dependence of post-MNNG colony-forming ability on Mer phenotype. No differences in glutathione levels that might explain these differences were detected. The amounts of SV40-specific DNA and RNA among the lines were found to vary widely, but no correlation with Mer phenotype was found.  相似文献   

6.
Using hybrid mice BDF1 doxorubicin (Dx) accumulation has been determined in leukemia P388 cells (P388/0), P388 cells with induced resistance to Dx (P388/Dx) and P388 cells with induced resistance to the finoptin (Fp) + Dx combination (P388/Fp + Dx). It has been shown that Fp doesn't affect Dx accumulation in or elimination from leukemia cells P388/0 or P388/Fp + Dx. The resistance of P388/Fp + Dx cells to the Fp + Dx combination develops during 6 passages. It can be concluded that Fp application doesn't abolish the problem of tumor cells' resistance to cytostatics.  相似文献   

7.
The effect of radiation of hyperthermia was estimated with a reference to the degree and duration of inhibition of DNA synthesis in the primary suspension cell cultures of Lewis lung carcinoma and bone marrow carcinoma of mice in vitro. The optimum conditions were chosen for cultivation of the primary suspension cell cultures according to the DNA synthesis. A study was made of the peculiarities of suppression and recovery of DNA synthesis in cells of Lewis lung carcinoma and bone marrow carcinoma of mice exposed to different gamma-radiation doses and hyperthermia.  相似文献   

8.
Conditioned medium from P388 D1 cell line containing interleukin 1 (IL-1) and granulocyte macrophage colony stimulating factor (GM-CSF) can stimulate prostaglandin E2 (PGE2) production by murine bone marrow cells. In this work, we show that although GM-CSF (either purified from P388 D1 CM or murine recombinant GM-CSF) does not significantly alter bone marrow cell PGE2 production, its presence in P388 D1 CM is however necessary to induce this effect since the presence of anti GM-CSF antiserum completely abrogated the increase in PGE2 production in response to P388 D1 CM. In addition IL-1 tested alone does not not modify PGE2 release by bone marrow cells. However, the simultaneous addition of IL-1 and GM-CSF markedly increases PGE2 production. Thus, the ability of P388 D1 CM to stimulate PGE2 synthesis by bone marrow cells appears to result from a synergistic action between GM-CSF and IL-1.  相似文献   

9.
Myeloid sarcomas are extramedullary accumulations of immature myeloid cells that may present with or without evidence of pathologic involvement of the bone marrow or peripheral blood, and often coincide with or precede a diagnosis of acute myeloid leukemia (AML). A dearth of experimental models has hampered the study of myeloid sarcomas and led us to establish a new system in which tumor induction can be evaluated in an easily accessible non-hematopoietic tissue compartment. Using ex-vivo transduction of oncogenic Kras(G12V) into p16/p19(-/-) bone marrow cells, we generated transplantable leukemia-initiating cells that rapidly induced tumor formation in the skeletal muscle of immunocompromised NOD.SCID mice. In this model, murine histiocytic sarcomas, equivalent to human myeloid sarcomas, emerged at the injection site 30-50 days after cell implantation and consisted of tightly packed monotypic cells that were CD48+, CD47+ and Mac1+, with low or absent expression of other hematopoietic lineage markers. Tumor cells also infiltrated the bone marrow, spleen and other non-hematopoietic organs of tumor-bearing animals, leading to systemic illness (leukemia) within two weeks of tumor detection. P16/p19(-/-); Kras(G12V) myeloid sarcomas were multi-clonal, with dominant clones selected during secondary transplantation. The systemic leukemic phenotypes exhibited by histiocytic sarcoma-bearing mice were nearly identical to those of animals in which leukemia was introduced by intravenous transplantation of the same donor cells. Moreover, murine histiocytic sarcoma could be similarly induced by intramuscular injection of MLL-AF9 leukemia cells. This study establishes a novel, transplantable model of murine histiocytic/myeloid sarcoma that recapitulates the natural progression of these malignancies to systemic disease and indicates a cell autonomous leukemogenic mechanism.  相似文献   

10.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

11.
Using male mice BDF1, it has been shown that the retention period of doxorubicin (DOX) is shorter in the leukemia P 388 cells with induced antibiotic resistance (P 388/DOX) as compared to the P 388 cells, sensitive to DOX. Administration of finoptin (FP) to animals leads to the increase of DOX concentration in the leukemia P 388/DOX cells during 240 min observation. FP promotes the therapeutic effect of DOX on mice bearing leukemia P 388/DOX. It can be suggested that the mechanism of FP action is the damaged DOX elimination from cells with induced resistance, since FP doesn't change the period of antibiotic circulation in the murine blood plasma.  相似文献   

12.
The influence of therapeutic and half doses of cisplatin and adriamycin combination with the anabolic drug ecdysterone (20-hydroecdison) on development of subcutaneously and intraperitoneally transplanted P388 and L1210 leukemia and metastasizing B16 melanoma was studied. Ecdysterone significantly stimulated the chemotherapeutic effect of low doses of the cytostatics: inhibition of tumor growth, mice survival rate, their lifespan, and the antimetastatic activity index were comparable or better than after therapy with high doses of the antitumor drugs. The influence of high and low doses of cisplatin and its low dose in combination with ecdysterone on the dynamics of protein and DNA biosynthesis in the liver, pancreas, thymus, spleen, and adrenals of tumor-bearing mice were also studied. Although the therapeutic effect of 4 mg/kg cisplatin by activated protein biosynthesis and DNA repair is comparable or better than that of its low dose (2 mg/kg) in combination with ecdysterone, in terms of chemotherapy the combination looks preferable since the therapeutic dose of cisplatin is toxic for the intact tissues.  相似文献   

13.
Allogeneic bone marrow transplantation is a curative treatment for leukemia and lymphoma, but graft-vs-host disease (GVHD) remains a major complication. Using a GVHD protective nonmyeloablative conditioning regimen of total lymphoid irradiation and antithymocyte serum (TLI/ATS) in mice that has been recently adapted to clinical studies, we show that regulatory host NKT cells prevent the expansion and tissue inflammation induced by donor T cells, but allow retention of the killing activity of donor T cells against the BCL1 B cell lymphoma. Whereas wild-type hosts given transplants from wild-type donors were protected against progressive tumor growth and lethal GVHD, NKT cell-deficient CD1d-/- and Jalpha-18-/- host mice given wild-type transplants cleared the tumor cells but died of GVHD. In contrast, wild-type hosts given transplants from CD8-/- or perforin-/- donors had progressive tumor growth without GVHD. Injection of host-type NKT cells into Jalpha-18-/- host mice conditioned with TLI/ATS markedly reduced the early expansion and colon injury induced by donor T cells. In conclusion, after TLI/ATS host conditioning and allogeneic bone marrow transplantation, host NKT cells can separate the proinflammatory and tumor cytolytic functions of donor T cells.  相似文献   

14.
We studied the effect of oxidative stress induced by hyperoxia, hydrogen peroxide, or menadione on leukemia P388 cells isolated from mice with early (4 days) and late (7 days) stages of tumor growth. Oxidative stress was shown to inhibit cell division and to induce apoptosis. The seven-day leukemia cells feature lower proliferative potential and higher sensitivity to oxidative stress and platidiam.  相似文献   

15.
Single-strand breaks induced in DNA of ascitic hepatoma cells by gamma-rays and N-methyl-N-nitrosourea (MNU), resp., may be effectively repaired. Double-strand breaks of DNA from MNU-treated hepatoma cells are also effectively repairable in vivo. Only a small part of double-strand breaks induced by gamma-rays in DNA of these cells is repaired in the postradiation period. The combined action of gamma-rays and MNU on the hepatoma cells causes a complete inhibition of repair of DNA and its further degradation. Under these conditions, inhibition of the repair of DNA synthesis and repression of DNA polymerase I activity is observed.  相似文献   

16.
Exposure of hematopoietic progenitors to gamma irradiation induces p53-dependent apoptosis. However, host responses to DNA damage are not uniform and can be modified by various factors. Here, we report that a split low-dose total-body irradiation (TBI) (1.5 Gy twice) to the host causes prominent apoptosis in bone marrow cells of Friend leukemia virus (FLV)-infected C3H mice but not in those of FLV-infected DBA mice. In C3H mice, the apoptosis occurs rapidly and progressively in erythroid cells, leading to lethal host anemia, although treatment with FLV alone or TBI alone induced minimal apoptosis in bone marrow cells. A marked accumulation of P53 protein was demonstrated in bone marrow cells from FLV-infected C3H mice 12 h after treatment with TBI. Although a similar accumulation of P53 was also observed in bone marrow cells from FLV-infected DBA mice treated with TBI, the amount appeared to be parallel to that of mice treated with TBI alone and was much lower than that of FLV- plus TBI-treated C3H mice. To determine the association of p53 with the prominent enhancement of apoptosis in FLV- plus TBI-treated C3H mice, p53 knockout mice of the C3H background (C3H p53(-/-)) were infected with FLV and treated with TBI. As expected, p53 knockout mice exhibited a very low frequency of apoptosis in the bone marrow after treatment with FLV plus TBI. Further, C3H p53(-/-) --> C3H p53(+/+) bone marrow chimeric mice treated with FLV plus TBI survived even longer than the chimeras treated with FLV alone. These findings indicate that infection with FLV strongly enhances radiation-induced apoptotic cell death of hematopoietic cells in host animals and that the apoptosis occurs through a p53-associated signaling pathway, although the response was not uniform in different host strains.  相似文献   

17.
T cell leukemias were induced in BDF 1 mice by methylnitrosourea (MNU). The phenotype of the leukemic cells is Thy1.2 +, PNA-, TdT+, TL+ and heterogeneous with respect to Lyt-1 and Lyt-2. About 70% of the leukemias have elevated amounts of gp70. During latency period of at least 9 + 12 weeks an early reduction in the various thymic cells and the CFU-S is observed, with almost complete recovery. Later PNA+ cells are reduced. Hydrocortisone treatment delays or enhances leukemogenesis, dependent on the time interval between hydrocortisone and MNU. Some mice show elevated amounts of gp70 in their bone marrow 2--3 weeks after MNU. The problem of target cells in the bone marrow and the thymus is discussed.  相似文献   

18.
HOXA9 expression is a common feature of acute myeloid leukemia, and high-level expression is correlated with poor prognosis. Moreover, HOXA9 overexpression immortalizes murine marrow progenitors that are arrested at a promyelocytic stage of differentiation when cultured and causes leukemia in recipient mice following transplantation of HOXA9 expressing bone marrow. The molecular mechanisms underlying the physiologic functions and transforming properties of HOXA9 are poorly understood. This study demonstrates that HOXA9 is phosphorylated by protein kinase C (PKC) and casein kinase II and that PKC mediates phosphorylation of purified HOXA9 on S204 as well as on T205, within a highly conserved consensus sequence, in the N-terminal region of the homeodomain. S204 in the endogenous HOXA9 protein was phosphorylated in PLB985 myeloid cells, as well as in HOXA9-immortalized murine marrow cells. This phosphorylation was enhanced by phorbol ester, a known inducer of PKC, and was inhibited by a specific PKC inhibitor. PKC-mediated phosphorylation of S204 decreased HOXA9 DNA binding affinity in vitro and the ability of the endogenous HOXA9 to form cooperative DNA binding complexes with PBX. PKC inhibition significantly reduced the phorbol-ester induced differentiation of the PLB985 hematopoietic cell line as well as HOXA9-immortalized murine bone marrow cells. These data suggest that phorbol ester-induced myeloid differentiation is in part due to PKC-mediated phosphorylation of HOXA9, which decreases the DNA binding of the homeoprotein.  相似文献   

19.
Effects of two Ca-antagonists, verapamil and nifedipine, on the total cellular cholesterol content and accumulation, as well as on the synthesis and hydrolysis of cholesteryl esters in human aortic intimal smooth muscle cells and P388D1 cell line have been studied. Verapamil and nifedipine used at 10(-6) M and higher concentrations decreased the total cellular cholesterol content (by 25-40%) in intimal cells isolated from atherosclerotic lesions without any effect on the cholesterol content in normal intimal cells or P388D1 cells. At 2 x 10(-5) M verapamil and nifedipine prevented the accumulation of cholesterol induced by atherogenic blood serum or atherogenic low density lipoproteins in both types of cells. At 10(-5) M and higher concentrations verapamil and nifedipine inhibited (2-3-fold) cholesteryl ester synthesis in intimal cells and, used at 10(-6) M and higher doses, in P388D1 cells as well. Verapamil and nifedipine (2 x 10(-5) M) enhanced the hydrolysis of cholesteryl esters in both types of cells. The Ca-channel agonist Bay K8644 had no effect on cholesteryl ester synthesis, nor did it suppress its inhibition by Ca-antagonist. The beta-receptor blocker propranolol induced the accumulation of cholesterol in intimal cells and inhibited the synthesis and hydrolysis of cholesterol esters in these cells. The data obtained suggest that the antiatherosclerotic action of Ca-blockers is determined by their ability to reduce the cellular cholesterol content which is suggested to be the result of enhanced hydrolysis of cellular cholesteryl esters.  相似文献   

20.
From the coral Galaxea fascicularis, a crude mucus-like extract (MS) and subsequently its purified component (P6) appear to contain a DNase-like activity that indiscriminately digested λDNA, as well as naked genomic DNAs isolated from a multiple-drug-resistant murine leukemia cell line, P388/VCR, and a nontransformed liver cell line, BL8L. However, MS and P6 specifically induced in situ DNA digestion in cultured P388/VCR cells from 30 minutes onward. After 3 days of incubation with MS or P6, DNA degradation coincided with complete killing of P388/VCR. In situ fluorescent labeling of fragmented DNA revealed that P6 induced apoptosis of P388/VCR cells, occurring as early at 1.5 hours. By day 3, all the P6-treated leukemia cells were apoptotic. In contrast, P6 caused neither in situ DNA digestion, nor apoptosis in the untransformed BL8L cells. Whether the DNase-like action of P6 is independent of or responsible for triggering the intrinsic endonuclease activity in the leukemia cell, thus leading to apoptosis, remains an object for further research. Nevertheless, the specificity of the apoptotic action of P6 on P388/VCR cells indicates its potential role in the development of an anticancer agent. Received July 6, 1998; accepted December 21, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号