首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primary infection of Salmonella enteritidis causes a spatial-temporal dependent change in the gene expression patterns in the intestine of chickens (Gallus gallus). This is the result of a dynamic intestinal response to adapt to the altered environment and to optimize its ‘health’ and functionality under the new circumstances. By inferring gene association networks (GANs), the complexities of and changes in biological networks can be uncovered. Within such GANs highly interacting (hub) genes can be identified, which are supposed to be high-level regulators connected to multiple processes. By exploring the intestinal expression of genes differing between control and Salmonella infected chicken in a time-dependent manner differences in GANs were found. In control chickens more developmental processes were observed, whereas in infected chickens relatively more processes were associated to ‘defense/pathogen response’. Moreover the conserved protein domains of the identified hub genes in controls were nuclear-associated, whereas hub genes in infected chickens were involved in ‘cellular communication’. The shift in topology and functionality of the intestinal GANs in control and Salmonella infected animals and the identification of GAN-specific hubs is a first step to understand the complexity of biological networks and processes regulating intestinal health and functionality under normal and disturbed conditions.  相似文献   

2.

Background

Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control.

Methodology/Principal Findings

In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression.

Conclusions/Significance

The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.  相似文献   

3.
4.
Avian leukosis virus (ALV) poses a major threat to poultry. The chicken gut microbiota plays critical roles in host performance, health and immunity. However, the effect of viral infection on the microbiota of Chinese local chickens is not well understood. In this study, we performed high-throughput 16S rRNA gene sequencing and evaluated the gut microbiota profiles using faeces from ALV subgroup J (ALV-J)-infected and healthy Huiyang bearded chickens (Chinese local chickens). At the phylum level, ALV-J infection mainly increased the abundance of Bacteroidetes and Proteobacteria and decreased that of Firmicutes. An analysis at the order, family and genus levels showed that the abundance of Lactobacillales, Lactobacillaceae and Lactobacillus was the highest in normal chicken faeces, accounting for 89·07%, 86·47% and 86·46%, respectively, of phylotypes. Moreover, samples from ALV-J-infected chickens were enriched with Bacteroidales, Clostridiales, Bacteroidaceae, Ruminococcaceae, Lachnospiraceae and Bacteroides. Our findings highlight that ALV-J infection alters the gut microbiota and disrupts the host–microbial homeostasis in chickens, which may be involved in the pathogenesis of ALV-J infection.  相似文献   

5.
6.
沙门菌是一种重要的人兽共患食源性病原菌。其感染宿主后可以凭借独特的免疫逃逸机制逃避宿主免疫系统的清除,潜伏在宿主体内1年至终身不等,从而建立持续性感染。沙门菌持续性感染与毒力岛密切相关,尤其是沙门菌毒力岛(Salmonella pathogenicity islands,SPIs) SPI-1和SPI-2。SPI-1效应蛋白SipB和SipC等以不同的途径影响细菌入侵,诱导细胞自噬或者凋亡;而SPI-2效应蛋白SseI和SseL等可以通过调控不同的信号通路协助沙门菌的胞内存活,为沙门菌持续性感染的发生和发展提供条件。本文主要阐述SipB和SseI等毒力岛效应蛋白在沙门菌持续性感染过程中的作用,同时总结了SPI-6、SPI-7和SPI-19等毒力岛的作用,以期为研究沙门菌持续性感染提供新思路。  相似文献   

7.
《Genomics》2022,114(5):110475
Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avβ-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.  相似文献   

8.
Salmonella Gallinarum is a pathogen with a host range specific to poultry, while Salmonella Enteritidis is a broad host range pathogen that colonizes poultry sub-clinically but is a leading cause of gastrointestinal salmonellosis in humans and many other species. Despite recent advances in our understanding of the complex interplay between Salmonella and their hosts, the molecular basis of host range restriction and unique pathobiology of Gallinarum remain largely unknown. Type VI Secretion System (T6SS) represents a new paradigm of protein secretion that is critical for the pathogenesis of many Gram-negative bacteria. We recently identified a putative T6SS in the Salmonella Pathogenicity Island 19 (SPI-19) of Gallinarum. In Enteritidis, SPI-19 is a degenerate element that has lost most of the T6SS functions encoded in the island. In this work, we studied the contribution of SPI-19 to the colonization of Salmonella Gallinarum strain 287/91 in chickens. Non-polar deletion mutants of SPI-19 and the clpV gene, an essential T6SS component, colonized the ileum, ceca, liver and spleen of White Leghorn chicks poorly compared to the wild-type strain after oral inoculation. Return of SPI-19 to the ΔSPI-19 mutant, using VEX-Capture, complemented this colonization defect. In contrast, transfer of SPI-19 from Gallinarum to Enteritidis resulted in transient increase in the colonization of the ileum, liver and spleen at day 1 post-infection, but at days 3 and 5 post-infection a strong colonization defect of the gut and internal organs of the experimentally infected chickens was observed. Our data indicate that SPI-19 and the T6SS encoded in this region contribute to the colonization of the gastrointestinal tract and internal organs of chickens by Salmonella Gallinarum and suggest that degradation of SPI-19 T6SS in Salmonella Enteritidis conferred an advantage in colonization of the avian host.  相似文献   

9.
10.

Background  

The Salmonella AvrA gene is present in 80% of Salmonella enterica serovar strains. AvrA protein mimics the activities of some eukaryotic proteins and uses these activities to the pathogen's advantage by debilitating the target cells, such as intestinal epithelial cells. Therefore, it is important to understand how AvrA works in targeting eukaryotic signaling pathways in intestinal infection in vivo. In this study, we hypothesized that AvrA interacts with multiple stress pathways in eukaryotic cells to manipulate the host defense system. A whole genome approach combined with bioinformatics assays was used to investigate the in vivo genetic responses of the mouse colon to Salmonella with or without AvrA protein expression in the early stage (8 hours) and late stage (4 days). Specifically, we examined the gene expression profiles in mouse colon as it responded to pathogenic Salmonella stain SL1344 (with AvrA expression) or SB1117 (without AvrA expression).  相似文献   

11.
Salmonella‐infected poultry products are a major source of human Salmonella infection. The prophylactic use of antimicrobials in poultry production was recently banned in the EU, increasing the need for alternative methods to control Salmonella infections in poultry flocks. Genetic selection of chickens more resistant to Salmonella colonization provides an attractive means of sustainably controlling the pathogen in commercial poultry flocks and its subsequent entry into the food chain. Analysis of different inbred chickens has shown that individual lines are consistently either susceptible or resistant to the many serovars of Salmonella that have been tested. In this study, two inbred chicken lines with differential susceptibility to Salmonella colonization (61(R) and N(S)) were used in a backcross experimental design. Unlike previous studies that used a candidate gene approach or low‐density genome‐wide screens, we have exploited a high‐density marker set of 1255 SNPs covering the whole genome to identify quantitative trait loci (QTL). Analysis of log‐transformed caecal bacterial levels between the parental lines revealed a significant difference at 1, 2, 3 and 4 days post‐infection (P < 0.05). Analysis of the genotypes of the backcross (F1 × N) population (n = 288) revealed four QTL on chromosomes 2, 3, 12 and 25 for the two traits examined in this study: log‐transformed bacterial counts in the caeca and presence of a hardened caseous caecal core. These included one genome‐wide significant QTL on chromosome 2 at 20 Mb and three additional QTL, on chromosomes 3, 12 and 25 at 96, 15 and 1 Mb, respectively, which were significant at the chromosome‐wide level (P < 0.05). The results generated in this study will inform future breeding strategies to control these pathogens in commercial poultry flocks.  相似文献   

12.
13.

Background

Salmonella enterica serovar Gallinarum (S. Gallinarum) is the causative agent of fowl typhoid, a severe systemic disease of chickens that results in high mortality amongst infected flocks. Due to its virulence, the immune response to S. Gallinarum is poorly characterised. In this study we have utilised infection by the live attenuated S. Gallinarum 9R vaccine strain in inbred chickens to characterise humoral, cellular and cytokine responses to systemic salmonellosis.

Results

Infection with 9R results in a mild systemic infection. Bacterial clearance at three weeks post infection coincides with increases in circulating anti-Salmonella antibodies, increased T cell proliferation to Salmonella challenge and increased expression of interferon gamma. These responses peak at four weeks post infection, then decline. Only modest increases of expression of the pro-inflammatory cytokine interleukin-1β were detected early in the infection.

Conclusion

Infection of chickens with the 9R vaccine strain induces a mild form of systemic salmonellosis. This induces both cellular and humoral immune responses, which peak soon after bacterial clearance. Unlike enteric-associated Salmonella infections the immune response is not prolonged, reflecting the absence of persistence of Salmonella in the gastrointestinal tract. The findings here indicate that the use of the S. Gallinarum 9R vaccine strain is an effective model to study immunity to systemic salmonellosis in the chicken and may be employed in further studies to determine which components of the immune response are needed for protection.
  相似文献   

14.
沙门菌病(Salmonellosis)是全世界最普遍的食源性疾病之一,不仅对养殖业造成经济损失,还对人类安全构成威胁。禽沙门菌感染肠道后,可诱导肠上皮细胞表达多种TLRs和炎症反应的发生,在分泌的趋化因子作用下免疫效应细胞迁移到感染部位。细菌通过肠上皮细胞屏障后被巨噬细胞或树突状细胞吞噬,其中巨噬细胞是沙门菌的主要定殖场所。天然免疫系统将抗原递呈给淋巴细胞后,机体能够在2–3周内通过以Th1为主的免疫应答清除在肠道和深层组织中的沙门菌。而宿主特异性血清型鸡白痢沙门菌从肠道侵入后,在肝脾和其他器官中定殖,进而引发全身感染。早期感染阶段不会引起肠道炎症反应,主要诱导以Th2为主的免疫应答,而Th1型应答相对较弱,有利于鸡白痢沙门菌在机体内的持续存在和感染。本文围绕禽沙门菌的致病机理和免疫应答特性进行阐述,尤其对鸡白痢沙门菌免疫逃逸和持续载菌的特性进行深入分析,为禽沙门菌病的防控提供新靶标和新见解。  相似文献   

15.
We have recently reported the gene expression profile of Pasteurella multocida during growth in the blood of chickens with fowl cholera. Here we report the gene expression profile of P. multocida during growth in the livers of similarly infected chickens. We compared expression profiles of bacteria harvested from the livers of infected chickens with late-stage fowl cholera with those of bacteria grown in rich medium. Independent analysis of bacterial expression profiles from three individual chickens indicated that 93 P. multocida genes were always differentially expressed during growth in liver tissue. Of these 93 genes, 49 were upregulated and 44 downregulated in the host. Many of the upregulated genes were involved in energy production and conversion (9/49) and carbohydrate transport and metabolism (8/49), and a number of these have been shown to be induced under anaerobic conditions in other species. The downregulated genes were generally of unknown or poorly characterised functions (14/44). Comparison of the differentially regulated gene sets identified for growth in liver with those identified previously for growth in blood allowed the identification of a core set of 13 upregulated and 16 downregulated genes that were differentially regulated in at least five of the six infections studied.  相似文献   

16.
17.
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only ’non-immune’ genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.  相似文献   

18.
19.
20.
王佐强  姚玉峰 《微生物学报》2018,58(7):1158-1166
沙门菌(Salmonella spp.)作为胞内病原菌,通过侵入宿主细胞,导致人类和多种动物感染疾病。在与宿主细胞的长期斗争中,沙门菌进化出多种机制来逃避宿主的监视与防御,从而完成侵入并生存增殖的过程。尽管一些效应蛋白靶向的宿主因子已经被发现,但大多数效应蛋白的靶点尚且未知。本文综述了沙门菌效应蛋白对宿主细胞生理活动的影响,包括对细胞骨架的变化、炎症应答、胞膜修饰和滤泡的胞内移动现象及其分子机制进行阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号