首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary The RecA protein ofEscherichia coli is essential for genetic recombination and postreplicational repair of DNA. In vitro, RecA protein promotes strand transfer reactions between full length linear duplex and single stranded circular DNA of X174 to form heteroduplex replicative form II-like structures (Cox and Lehman 1981a). In a similar way, it transfers one strand of a short duplex restriction fragment to a single stranded circle. Both reactions require RecA and single strand binding protein (SSB) in amounts sufficient to saturate the ssDNA. The rate and extent of strand transfer is enhanced considerably when SSB is added after preincubation of the DNA with RecA protein. In contrast, SSB protein is not required for RecA protein catalysed reciprocal strand exchanges between regions of duplex DNA. These results indicate that while SSB is necessary for efficient transfer between linear duplex and ssDNA to form a single heteroduplex, it is not required for branch migration reactions between duplex molecules that form two heteroduplexes.Abbreviations SSB single strand binding protein - ssDNA single stranded DNA - X phage X174 - bp base pairs - ATP[S] adenosine 5-O-(gamma-thiotriphosphate)  相似文献   

2.
RecA protein forms filaments on both single- and double-stranded DNA. Several studies confirm that filament extension occurs in the 5' to 3' direction on single-stranded DNA. These filaments also disassemble in an end-dependent fashion, and several indirect observations suggest that the disassembly occurs on the end opposite to that at which assembly occurs. By labeling the 5' end of single-stranded DNA with a segment of duplex DNA, we demonstrate unambiguously that RecA filaments disassemble uniquely in the 5' to 3' direction.  相似文献   

3.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

4.
B J Rao  B Jwang  M Dutreix 《Biochimie》1991,73(4):363-370
During the directional strand exchange that is promoted by RecA protein between linear duplex DNA and circular single-stranded DNA, a triple-stranded DNA intermediate was formed and persisted even after the completion of strand transfer followed by deproteinization. In the deproteinized three-stranded DNA complexes, the sequestered linear third strand resisted digestion by E coli exonuclease I. In relation to polarity of strand exchange which defines the proximal and distal ends of the duplex DNA, when homology was restricted to the distal region of duplex substrate, the joints formed efficiently and were stable even upon complete deproteinization. Enzymatic probing of deproteinized distal joints with nuclease P1 revealed that the joints consist of long three-stranded structures that at neutral pH lack significant single-stranded character in any of the three strands. Instead of circular single-stranded DNA, when a linear single strand is recombined with partially homologous duplex DNA, in the presence of SSB, the formation of homologous joints by RecA protein, is significantly more efficient at distal end than at the proximal. Taken together, these observations suggest that with any single-stranded DNA (circular or linear), RecA protein efficiently promotes the formation of distal joints, from which, however, authentic strand exchange may not occur. Moreover, these joints might represent an intermediate which is trapped into a stable triple stranded state.  相似文献   

5.
RecA protein is essential for homologous recombination and the repair of DNA double-strand breaks in Escherichia coli. The protein binds DNA to form nucleoprotein filaments that promote joint molecule formation and strand exchange in vitro. RecA polymerises on ssDNA in the 5'-3' direction and catalyses strand exchange and branch migration with a 5'-3' polarity. It has been reported previously, using D-loop assays, in which ssDNA (containing a heterologous block at one end) invades supercoiled duplex DNA that 3'-homologous ends are reactive, whereas 5'-ends are inactive. This polarity bias was thought to be due to the polarity of RecA filament formation, which results in the 3'-ends being coated in RecA, whereas 5'-ends remain naked. Using a range of duplex substrates containing ssDNA tails of various lengths and polarities, we now demonstrate that when no heterologous block is imposed, 5'-ends are just as reactive as 3'-ends. Moreover, using short-tailed substrates, we find that 5'-ends form more stable D-loops than 3'-ends. This bias may be a consequence of the instability of short 3'-joints. With more physiological substrates containing long ssDNA tails, we find that RecA shows no intrinsic preference for 5' or 3'-ends and that both form D-loop complexes with high efficiency.  相似文献   

6.
M C Whitby  R G Lloyd 《The EMBO journal》1995,14(14):3302-3310
RecG protein is required for normal levels of recombination and DNA repair in Escherichia coli. This 76 kDa polypeptide is a junction-specific DNA helicase that acts post-synaptically to drive branch migration of Holliday junction intermediates made by RecA during the strand exchange stage of recombination. To gain further insight into the role of RecG, we studied its activity on three-strand intermediates formed by RecA between circular single-stranded and linear duplex DNAs. Once RecA is removed, RecG drives branch migration of these intermediates by a junction-targeted activity that depends on hydrolysis of ATP. RuvAB has a similar activity. However, when RecG is added to a RecA strand exchange reaction it severely reduces the accumulation of joint molecule intermediates by driving branch migration of junctions in the reverse direction to that catalysed by RecA strand exchange. In comparison, RuvAB has little effect on the reaction. We discuss how reverse branch migration by RecG, which acts counter of the 5'-->3' polarity of RecA binding and strand exchange, could serve to promote or abort the early stages of recombination, depending on the orientation of the single DNA strand initiating the exchange relative to the adjacent duplex region.  相似文献   

7.
The RecA protein of Escherichia coli optimally promotes DNA strand exchange reactions in the presence of the single strand DNA-binding protein of E. coli (SSB protein). Under these conditions, assembly of RecA protein onto single-stranded DNA (ssDNA) occurs in three steps. First, the ssDNA is rapidly covered by SSB protein. The binding of RecA protein is then initiated by nucleation of a short tract of RecA protein onto the ssDNA. Finally, cooperative polymerization of additional RecA protein accompanied by displacement of SSB protein results in a ssDNA-RecA protein filament (Griffith, J. D., Harris, L. D., and Register, J. C. (1984) Cold Spring Harbor Symp. Quant. Biol. 49, 553-559). We report here that RecA protein assembly onto circular ssDNA yields RecA protein-covered circles in which greater than 85% are completely covered by RecA protein with no remaining SSB protein-covered segments (as detected by electron microscopy). However, when linear ssDNA is used, 90% of the filaments contain a short segment at one end complexed with SSB protein. This suggests that RecA protein assembly is unidirectional. Visualization of the assembly of RecA protein onto either long ssDNA tails (containing either 5' or 3' termini) or ssDNA gaps generated in double strand DNA allowed us to determine that the RecA protein polymerizes in the 5' to 3' direction on ssDNA and preferentially nucleates at ssDNA-double strand DNA junctions containing 5' termini.  相似文献   

8.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

9.
The recA protein of Escherichia coli promotes pairing in vitro between covalent circular duplex DNA and homologous circular duplex DNA containing a single stranded region. We have used a filter binding assay to investigate the frequency of homologous pairing between gapped and intact duplex DNA when unwinding of the free 3' and 5' ends of the gapped molecules was blocked. In order to obtain DNA without free ends, the gapped DNA was treated with trimethylpsoralen and 360 nm light so as to introduce about 6 crosslinks per DNA molecule and the double stranded regions on either side of the gaps were then digested up to the first crosslinks with exonuclease III and lambda exonuclease. This treatment did not diminish the frequency of homologous pairing, an observation which is difficult to reconcile with models for recombination requiring strand unwinding before pairing.  相似文献   

10.
Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between the creation of new heteroduplex DNA and the eventual separation of a third strand, there exists an unusual DNA intermediate that may contain three-stranded regions of natural DNA that are several thousand bases in length.  相似文献   

11.
C-terminal fragment of Escherichia coli RecA protein 150 amino acids residues in length--the product of RecA protein BrCN-hydrolysis--was isolated by single stranded DNA-cellulose chromatography. In low salt buffer this fragment tightly bounds with single and double stranded DNAs. Aggregational properties of the fragment are similar to such of native protein: the fragment oligomerises in low salt buffer and precipitates in the presence of Mg2+. Double stranded DNA in the last case coprecipitates with the fragment, forming a complex which is stable at higher salt concentration, like the complexes with a native RecA protein. These results indicate that the C-terminal half of RecA protein participates in DNA binding and intersubunits interaction of RecA protein.  相似文献   

12.
Summary The temperature sensitive allele recA200 has been cloned into the multiple copy number plasmid pBR322 and the gene product isolated. The purified RecA200 protein is temperature sensitive in ability to cleave the phage and LexA repressors in vitro and also in ability to promote a successful search for homology between single stranded DNA and a homologous duplex leading to D-loop formation. However, at the non-permissive temperature the RecA200 protein has approximately wild type single stranded DNA dependent ATPase activity and ability to promote pairing between homologous single DNA strands. The demonstration that the temperature sensitivity in vivo can be correlated with the temperature sensitive cleavage of the and LexA repressors in vitro and also with D-loop formation shows that these in vitro reactions, which require large amounts of RecA protein, are not carried out by trace amounts of contaminating proteins.  相似文献   

13.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

14.
The nucleoproteic filaments of RecA polymerized on single stranded DNA are able to integrate double stranded DNA in a coaxial arrangement (with DNA stretched by a factor 1.5), to recognize homologous sequences in the duplex and to perform strand exchange between the single stranded and double stranded molecules. While experimental results favor the hypothesis of an invasion of the minor groove of the duplex by the single strand, parallel minor groove triple helices have never been isolated or even modeled, the minor groove offering little space for a third strand to interact. Based on an internal coordinate modeling study, we show here that such a structure is perfectly conceivable when the two interacting oligomers are stretched by a factor 1.5, in order to open the minor groove of the duplex. The model helix presents characteristics that coincide with known experimental data on unwinding, base pair inclination and inter-proton distances. Moreover, we show that extension and unwinding stabilize the triple helix. New patterns of triplet interaction via the minor groove are presented.  相似文献   

15.
Abstract

The nucleoproteic filaments of RecA polymerized on single stranded DNA are able to integrate double stranded DNA in a coaxial arrangement (with DNA stretched by a factor 1.5), to recognize homologous sequences in the duplex and to perform strand exchange between the single stranded and double stranded molecules. While experimental results favor the hypothesis of an invasion of the minor groove of the duplex by the single strand, parallel minor groove triple helices have never been isolated or even modeled, the minor groove offering little space for a third strand to interact. Based on an internal coordinate modeling study, we show here that such a structure is perfectly conceivable when the two interacting oligomers are stretched by a factor 1.5, in order to open the minor groove of the duplex. The model helix presents characteristics that coincide with known experimental data on unwinding, base pair inclination and inter-proton distances. Moreover, we show that extension and unwinding stabilize the triple helix. New patterns of triplet interaction via the minor groove are presented.  相似文献   

16.
Partial purification and characterization of a recombinase from human cells   总被引:27,自引:0,他引:27  
P Hsieh  M S Meyn  R D Camerini-Otero 《Cell》1986,44(6):885-894
We describe the partial purification and characterization of a human recombinase activity from RPMI 1788 B lymphoblasts. Stoichiometric amounts of recombinase carry out a strand transfer reaction between linear duplex DNA and homologous circular single-strand DNA. The product of strand transfer by the recombinase is a joint molecule composed of a single-strand circle joined to one end of the linear duplex molecule by a region of DNA heteroduplex at least 150 bp long. Formation of DNA heteroduplexes is accompanied by strand displacement. Strand invasion initiates at the ends of the linear duplex. Finally, strand displacement by human recombinase exhibits polarity and proceeds in a 3' to 5' direction. This is the first demonstration of a strand transfer activity from a high eukaryote. We discuss similarities between our recombinase and the RecA and rec1 recombination proteins from E. coli and Ustilago maydis, respectively.  相似文献   

17.
E. coil RecA protein and topolsomerase I, acting on superhelical DNA and circular single strands in the presence of ATP and Mg2+, topologically link single-stranded molecules to one another, and single-stranded molecules to duplex DNA. When super-helical DNA is relaxed by prior incubation with topoisomerase, it is a poor substrate for catenation. Extensive homology stimulates the catenation of circular single-stranded DNA and superhelical DNA, whereas little reaction occurs between these forms of the closely related DNAs of phages φX174 and G4, indicating that, in conjunction with topoisomerase I, RecA protein can discriminate perfect or nearly perfect homology from a high degree of relatedness. Circular single-stranded G4 DNA reacts with superhelical DNA of a chimeric phage, M13Goril, to form catenanes, at least half of which survive heating at 80°C following restriction cleavage in the M13 region, but few of which survive following restriction cleavage in the G4 region. Electron microscopic examination of catenated molecules cleaved in the M13 region reveals that in most cases the single-stranded G4 DNA is joined to the linear duplex M13(G4) DNA in the homologous G4 region. The junction frequently has the appearance of a D loop, with an extent equivalent to 100 or more bp. We conclude that a significant fraction of catenanes were hemicatenanes, in which the single-stranded circle was topologically linked, probably by multiple turns, to its complementary strand in the duplex DNA. These observations support the previous conclusion that RecA protein can pair a single strand with its complementary strand in duplex DNA in a side-by-side fashion without a free end in any of the three strands.  相似文献   

18.
The recA protein (RecA) promotes DNA pairing and strand exchange optimally in the presence of single-stranded binding protein (SSB). Under these conditions, 3' homologous ends are essential for stable joint molecule formation between linear single-stranded DNA (ssDNA) and supercoiled DNA (i.e. 3' ends are 50-60 times more reactive than 5' ends). Linear ssDNAs with homology at the 5' end do not participate in pairing. In the absence of SSB, the strand exchange reaction is less efficient; however, linear ssDNAs with 3' end homology are still 5- to 10-fold more reactive than those with 5' end homology. The preference for a 3' homologous end in the absence of SSB suggests that this is an intrinsic property of RecA-promoted strand exchange. The preferential reactivity of 3' homologous ends is likely to be a consequence of the polarity of polymerization of RecA on ssDNA. Specifically, since RecA polymerizes in the 5'----3' direction, 3' ends are more likely to be coated with RecA and, hence, will be more reactive than 5' ends.  相似文献   

19.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

20.
Summary We have used a sensitive gel electrophoresis assay to detect the products of Escherichia coli RecA protein catalysed strand exchange reactions between gapped and duplex DNA molecules. We identify structures that correspond to joint molecules formed by homologous pairing, and show that joint molecules are converted by RecA protein into heteroduplex monomers by reciprocal strand exchanges. However, strand exchanges only occur when there is a 3-terminus complementary to the single stranded DNA in the gap. In the absence of a complementary free end, the two DNA molecules pair and short heteroduplex regions are formed by localised interwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号