首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The development of the LCIA programme of the UNEP/SETAC Life Cycle Initiative started with a global survey of LCA practitioners. There were 91 LCIA-specific responses from all global regions. Respondents gave an indication of how they use LCA with respect to both the stage of LCA that they base decisions on (LCI, LCIA or a combination of both) as well as the types of decisions which they support with LCA information. The issues requiring immediate attention within the UNEP SETAC Life Cycle Initiative identified from this User Needs analysis are the need for transparency in the methodology, for scientific confidence and for scientific co-operation as well as the development of a recommended set of factors and methodologies. Of interest is the fact that results from the different regions highlighted the need for different impact categories. Based on this information proposals were made for new impact categories to be included in LCA (and thus LCIA). The LCIA programme aims to enhance the availability of sound LCA data and methods and to deliver guidance on their use. More specifically, it aims to 1) make results and recommendations widely available for users through the creation of a worldwide accessible information system and 2) establish recommended characterisation factors and related methodologies for the different impact categories, possibly consisting of sets at both midpoint and damage level. The work of the LCIA programme of the UNEP/SETAC Life Cycle Initiative has been started within four task forces on 1) LCIA information system and framework, 2) natural resources and land use, 3) toxic impacts, and 4) transboundary impacts. All participants willing to contribute to these efforts are invited to contact the LCIA programme manager or to join the next LCIA workgroup meeting that will take place in at the world SETAC congress in Portland on Thursday 18 November 2004.  相似文献   

2.
Goal and Background  Current Life Cycle Impact Assessment (LCIA) procedures have demonstrated certain limitations in the South African manufacturing industry context. The aim of this paper is to propose a modified LCIA procedure, which is based on the protection of resource groups. Methods  A LCIA framework is introduced that applies the characterisation procedure of available midpoint categories, with the exception of land use. Characterisation factors for land occupation and transformation is suggested for South Africa. A distanceto-target approach is used for the normalisation of midpoint categories, which focuses on the ambient quality and quantity objectives for four resource groups: Air, Water, Land and Mined Abiotic Resources. The quality and quantity objectives are determined for defined South African Life Cycle Assessment (SALCA) Regions and take into account endpoint or damage targets. Following the precautionary approach, a Resource Impact Indicator (RII) is calculated for the resource groups. Subjective weighting values for the resource groups are also proposed, based on survey results from the manufacturing industry sector and the expenditure trends of the South African national government. The subjective weighting values are used to calculate overall Environmental Performance Resource Impact Indicators (EPRIIs) when comparing life cycle systems with each other. The proposed approaches are evaluated with a known wool case study. Results and Discussion  The calculation of a RJI ensures that all natural resources that are important from a South African perspective are duly considered in a LCIA. The results of a LCIA are consequently not reliant on a detailed Life Cycle Inventory (LCI) and the number of midpoint categories that converge on a single resource group. The case study establishes the importance of region-specificity, for LCIs and LCIAs. Conclusions  The proposed LCIA procedure demonstrates reasonable ease of communication of LCIA results. It further allows for the inclusion of additional midpoint categories and is adaptable for specific regions. Recommendations and Outlook  The acceptance of the LCIA procedure must be evaluated for different industry and government sectors. Also, the adequate incorporation of Environmental Performance Resource Impact Indicators (EPRIIs) into decision-making for Life Cycle Management purposes must be researched further. Specifically, the application of the procedures for supply chain management will be investigated.  相似文献   

3.

Purpose

The paper provides a late report from the United Nations Environment Program (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative workshop “Life Cycle Impact Assessment (LCIA)—where we are, trends, and next steps;” it embeds this report into recent development with regard to the envisaged development of global guidance on environmental life cycle impact assessment indicators and related methodologies.

Methods

The document is the output of the UNEP/SETAC Life Cycle Initiative’s workshop on “Life Cycle Impact Assessment—where we are, trends, and next steps.” The presentations and discussions held during the workshop reviewed the first two phases of the Life Cycle Initiative and provided an overview of current LCIA activities being conducted by the Initiative, governments and academia, as well as corporate approaches. The outcomes of the workshop are reflected in light of the implementation of the strategy for Phase 3 of the Life Cycle Initiative.

Results

The range of views provided during the workshop indicated different user needs, with regards to, amongst other things, the required complexity of the LCIA methodology, associated costs, and the selection of LCIA categories depending on environmental priorities. The workshop’s results signified a number of potential focus areas for Phase 3 of the Initiative, including capacity building efforts concerning LCIA in developing countries and emerging economies, the preparation of training materials on LCIA, the production of global guidance on LCIA, and the potential development of a broader sustainability indicators framework.

Conclusions

These suggestions have been taken into account in the strategy for Phase 3 of the Life Cycle Initiative in two flagship projects, one on global capability development on life cycle approaches and the other on global guidance on environmental life cycle impact assessment indicators. In the context of the latter project, first activities are being organized and planned. Moreover, UNEP has included the recommendations in its Rio + 20 Voluntary Commitments: UNEP and SETAC through the UNEP/SETAC Life Cycle Initiative commit to facilitate improved access to good quality life cycle data and databases as well as expanded use of key environmental indicators that allows the measurement and monitoring of progress towards the environmental sustainability of selected product chains.  相似文献   

4.
Under consideration of the overall Life Cycle Inventory Analysis (LCI) results generated in the first step of this study and based on the February 1999 edition of ISO/DIS 14042 the Life Cycle Impact Assessment (LCIA) for the introduction of various emission control measures for freight traffic heavy duty vehicles in Germany was determined. For the examination of the several mandatory elements 11 impact categories related to the freight traffic and the LCI results were focussed, the LCI results were designed to these impact categories and with characterization factors of the 11 selected and recognized characterisation models the categories indicator endpoints were quantified. The optional elements for normalization and weighting were added to the analysis. Two reference values are used for normalizing the category indicator results. For the weighting step 8 recognized evaluation methods were selected with the aim to aggregate the LCI results to an overall value. The results enable plausible conclusions with regard to the ecological advantages and disadvantages of the use of each analysed emission control technology for heavy duty diesel vehicles. As no perfectly clear ranking can be distinguished for evaluation of the generated results and no correlation can be established to the economical effects of the corresponding measurements, it is necessary to complete the currently existing recommendation from the ISO/DIS-Standards with further parameters. Phase 1: Life Cycle Inventory Analysis. Int J LCA vn6 (4) 231–242(2001) Phase 3: Life Cycle Interpretation (DOI: http://dx.doi.oro/10.1065/ Ica2000.12.044.3)  相似文献   

5.
Goal, Scope and Background The Apeldoorn Workshop (April 15th, 2004, Apeldoorn, NL) brought together specialists in LCA and Risk Assessment to discuss current practices and complications of the life cycle impact assessment (LCIA) ecological toxicity (ecotox) methodologies for metals. The consensus was that the LCIA methods currently available do not appropriately characterize impacts of metals due to lack of fundamental metals chemistry in the models. A review of five methods available to perform ecotox impact assessment for metals has been prepared to provide Life Cycle Assessment (LCA) practitioners with a better understanding of the current state of the science and potential biases related to metals. The intent is to provide awareness on issues related to ecotox impact assessment. Methods In this paper two case studies, one a copper based product (copper tube), the other a zinc-based product (gutter systems), were selected and examined by applying freshwater ecological toxicity impact models – USES-LCA, Eco-indicator 99 (EI 99), IMPACT 2002, EDIP 97, and CalTOX-ETP. Both studies are recent, comprehensive, cradle-to-gate, and peer-reviewed. The objective is to review the LCIA results in the context of the practical concerns identified by the Apeldoorn Declaration, in particular illustrating any inconsistencies such as chemical characterization coverage, species specificity, and relative contribution to impact results. Results and Discussion The results obtained from all five of the LCIA methods for the copper tube LCI pointed to the same substance as being the most important – copper. This result was obtained despite major fundamental differences between the LCIA methods applied. However, variations of results were found when examining the freshwater ecological toxicity potential of zinc gutter systems. Procedural difficulties and inconsistencies were observed. In part this was due to basic differences in model nomenclature and differences in coverage (IMPACT 2002+ and EDIP 97 contained characterization factors for aluminium that resulted in 90% and 22% contribution to burden respectively, the other three methods did not). Differences were also observed relative to the emissions source compartment. In the case of zinc, air emissions were found to be substantial for some ecotox models, whereas, water emissions results were found to be of issue for others. Conclusions This investigation illustrates the need to proceed with caution when applying LCIA ecotox methodologies to life cycle studies that include metals. Until further improvements are made, the deficiencies should be clearly communicated as part of LCIA reporting. Business or policy decisions should not without further discussion be based solely on the results of the currently available methods for assessing ecotoxicity in LCIA. Outlook The outlook to remedy deficiencies in the ecological toxicity methods is promising. Recently, the LCIA Toxic Impacts Task Force of the UNEP/SETAC Life Cycle Initiative has formed a subgroup to address specific issues and guide the work towards establishment of sound characterization factors for metals. Although some measure of precision of estimation of potential impact has been observed, such as in the case of copper, accuracy is also a major concern and should be addressed. Further investigation through controlled experimentation is needed, particularly LCIs composed of a variety of inorganics as well as organics constituents. Support for this activity has come from the scientific community and industry as well. Broader aspects of structure and nomenclature are being collectively addressed by the UNEP/SETAC Life Cycle Initiative. These efforts will bring practical solutions to issues of naming conventions and LCI to LCIA flow assignments.  相似文献   

6.
Background, Aim and Scope Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately there is no widely accepted assessment method so far for land use impacts. This paper presents an attempt, within the UNEP-SETAC Life Cycle Initiative, to provide a framework for the Life Cycle Impact Assessment (LCIA) of land use. Materials and Methods: This framework builds from previous documents, particularly the SETAC book on LCIA (Lindeijer et al. 2002), developing essential issues such as the reference for occupation impacts; the impact pathways to be included in the analysis; the units of measure in the impact mechanism (land use interventions to impacts); the ways to deal with impacts in the future; and bio-geographical differentiation. Results: The paper describes the selected impact pathways, linking the land use elementary flows (occupation; transformation) and parameters (intensity) registered in the inventory (LCI) to the midpoint impact indicators and to the relevant damage categories (natural environment and natural resources). An impact occurs when the land properties are modified (transformation) and also when the current man-made properties are maintained (occupation). Discussion: The size of impact is the difference between the effect on land quality from the studied case of land use and a suitable reference land use on the same area (dynamic reference situation). The impact depends not only on the type of land use (including coverage and intensity) but is also heavily influenced by the bio-geographical conditions of the area. The time lag between the land use intervention and the impact may be large; thus land use impacts should be calculated over a reasonable time period after the actual land use finishes, at least until a new steady state in land quality is reached. Conclusions: Guidance is provided on the definition of the dynamic reference situation and on methods and time frame to assess the impacts occurring after the actual land use. Including the occupation impacts acknowledges that humans are not the sole users of land. Recommendations and Perspectives: The main damages affected by land use that should be considered by any method to assess land use impacts in LCIA are: biodiversity (existence value); biotic production potential (including soil fertility and use value of biodiversity); ecological soil quality (including life support functions of soil other than biotic production potential). Bio-geographical differentiation is required for land use impacts, because the same intervention may have different consequences depending on the sensitivity and inherent land quality of the environment where it occurs. For the moment, an indication of how such task could be done and likely bio-geographical parameters to be considered are suggested. The recommendation of indicators for the suggested impact categories is a matter of future research.  相似文献   

7.

Purpose

In this paper, we summarize the discussion and present the findings of an expert group effort under the umbrella of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative proposing natural resources as an Area of Protection (AoP) in Life Cycle Impact Assessment (LCIA).

Methods

As a first step, natural resources have been defined for the LCA context with reference to the overall UNEP/SETAC Life Cycle Impact Assessment (LCIA) framework. Second, existing LCIA methods have been reviewed and discussed. The reviewed methods have been evaluated according to the considered type of natural resources and their underlying principles followed (use-to-availability ratios, backup technology approaches, or thermodynamic accounting methods).

Results and discussion

There is currently no single LCIA method available that addresses impacts for all natural resource categories, nor do existing methods and models addressing different natural resource categories do so in a consistent way across categories. Exceptions are exergy and solar energy-related methods, which cover the widest range of resource categories. However, these methods do not link exergy consumption to changes in availability or provisioning capacity of a specific natural resource (e.g., mineral, water, land etc.). So far, there is no agreement in the scientific community on the most relevant type of future resource indicators (depletion, increased energy use or cost due to resource extraction, etc.). To address this challenge, a framework based on the concept of stock/fund/flow resources is proposed to identify, across natural resource categories, whether depletion/dissipation (of stocks and funds) or competition (for flows) is the main relevant aspect.

Conclusions

An LCIA method—or a set of methods—that consistently address all natural resource categories is needed in order to avoid burden shifting from the impact associated with one resource to the impact associated with another resource. This paper is an important basis for a step forward in the direction of consistently integrating the various natural resources as an Area of Protection into LCA.
  相似文献   

8.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

9.
On May 25–26, 2000 in Brighton (England), the third in a series of international workshops was held under the umbrella of UNEP addressing issues in Life Cycle Impact Assessment (LCIA). The workshop provided a forum for experts to discuss midpoint vs. endpoint modeling. Midpoints are considered to be links in the cause-effect chain (environmental mechanism) of an impact category, prior to the endpoints, at which characterization factors or indicators can be derived to reflect the relative importance of emissions or extractions. Common examples of midpoint characterization factors include ozone depletion potentials, global warming potentials, and photochemical ozone (smog) creation potentials. Recently, however, some methodologies have adopted characterization factors at an endpoint level in the cause-effect chain for all categories of impact (e.g., human health impacts in terms of disability adjusted life years for carcinogenicity, climate change, ozone depletion, photochemical ozone creation; or impacts in terms of changes in biodiversity, etc.). The topics addressed at this workshop included the implications of midpoint versus endpoint indicators with respect to uncertainty (parameter, model and scenario), transparency and the ability to subsequently resolve trade-offs across impact categories using weighting techniques. The workshop closed with a consensus that both midpoint and endpoint methodologies provide useful information to the decision maker, prompting the call for tools that include both in a consistent framework.  相似文献   

10.
11.
Life cycle assessment framework in agriculture on the farm level   总被引:1,自引:0,他引:1  
Life Cycle Assessment (LCA) is a method that can be used to assess the environmental impact of agriculture, but impact categories and the functional unit of classical LCA’s must be adapted to the specific agricultural production process. Serving as an example, the framework of a LCA of 18 grassland dairy farms covering three farming intensity levels and carried out in the Allgäu region in southern Germany is presented. By focussing on the chosen impact categories and the respective, suitable functional units, the specific needs and backgrounds of conducting an agricultural LCA are discussed in general.  相似文献   

12.
Numerous methodologies for the life-cycle impact assessment (LCIA) step of life-cycle assessment (LCA) are currently in popular use. These methods, which are based on a single method or level of analysis, are limited to the environmental fates, impact categories, damage functions, and stressors included in the method or model. Because of this, it has been suggested within the LCA community that LCIA data from multiple methods and/or levels of analysis, that is, end-point and midpoint indicators, be used in LCA-based decision analysis to facilitate better or, at least more informed, decision making. In this (two-part) series of articles, we develop and present a series of LCA-based decision analysis models, based on multiattribute value theory (MAVT), which utilize data from multiple LCIA methods and/or levels of analysis. The key to accomplishing this is the recognition of what LCIA damage indicators represent with respect to decision analysis, namely, decision attributes and, in most cases, proxy attributes. The use of proxy attributes in a decision model, however, poses certain challenges, such as the assessment of decision-maker preferences for actual consequences that are only known imprecisely because of inherent limits of both LCA and scientific knowledge. In this article (part I), we provide a brief overview of MAVT and examine some of the decision-theoretic issues and implications of current LCIA methods. We illustrate the application of MAVT to develop a decision model utilizing damage indicators from a single LCIA methodology; and, we identify the decision-theoretic issues that arise when attempting to combine LCIA indicators from multiple methods and/or levels of analysis in a single decision model. Finally, we introduce the use in our methodology of constructed attributes to combine related end-point damage indicators into single decision attributes and the concept and evaluation of proxy attributes.  相似文献   

13.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.016

Goal, Scope and Background

Although both cost-benefit analysis (CBA) and life cycle assessment (LCA) have developed from engineering practice, and have the same objective of a holistic ex-ante assessment of human activities, the techniques have until recently developed in relative isolation. This has resulted in a situation where much can be gained from an integration of the strong aspects of each technique. Such integration is now being prompted by the more widespread use of both CBA and LCA on the global arena, where also the issues of social responsibility are now in focus. Increasing availability of data on both biophysical and social impacts now allow the development of a truly holistic, quantitative environmental assessment technique that integrates economic, biophysical and social impact pathways in a structured and consistent way. The concept of impact pathways, linking biophysical and economic inventory results via midpoint impact indicators to final damage indicators, is well described in the LCA and CBA literature. Therefore, this paper places specific emphasis on how social aspects can be integrated in LCA.

Methods

and Results. With a starting point in the conceptual structure and approach of life cycle impact assessment (LCIA), as developed by Helias Udo de Haes and the SETAC/UNEP Life Cycle Initiative, the paper identifies six damage categories under the general heading of human life and well-being. The paper proposes a comprehensive set of indicators, with units of measurement, and a first estimate of global normalisation values, based on incidence or prevalence data from statistical sources and severity scores from health state analogues. Examples are provided of impact chains linking social inventory indicators to impacts on both human well-being and productivity.

Recommendation and Perspective

It is suggested that human well-being measured in QALYs (Quality Adjusted Life Years) may provide an attractive single-score alternative to direct monetarisation.
  相似文献   

14.

Purpose  

Few studies have examined differing interpretations of life cycle impact assessment (LCIA) results between midpoints and endpoints for the same systems. This paper focuses on the LCIA of municipal solid waste (MSW) systems by taking both the midpoint and endpoint approaches and uses LIME (Life Cycle Impact Assessment Method based on Endpoint Modeling, version 2006). With respect to global and site-dependent factors, environmental impact categories were divided into global, regional, and local scales. Results are shown as net emissions consisting of system emissions and avoided emissions.  相似文献   

15.
This study provides a benchmark of the life cycle environmental impact characteristics associated with a typical soybased ink used for sheetfed lithographic printing. The scope ineluded a streamlined Life Cycle Inventory (LCI) and Impact Assessment (LCIA). Materials, processes, and life cycle stages that are the same between different printing inks, or were less than one percent by mass of the printing system input materials, were excluded. The LCIA included identification of specific processes in the life cycle of soy-based ink printing that make the greatest contribution to the overall environmental hazard potential in 13 impact categories for the baseline printing system selected. The LCIA approach included both regional scaling for areas that differ in sensitivity to certain impact indicators and normalization against a reference value. Reduction in the use of tall oil rosin and switching from conventional to low or no-till farming appear to be promising opportunities for reducing the environmental hazard potential.  相似文献   

16.

Purpose

Life cycle assessment (LCA) has been increasingly implemented in analyzing the environmental performance of buildings and construction projects. To assess the life cycle environmental performance, decision-makers may adopt the two life cycle impact assessment (LCIA) approaches, namely the midpoint and endpoint models. Any imprudent usage of the two approaches may affect the assessment results and thus lead to misleading findings. ReCiPe, a well-known work, includes a package of LCIA methods to provide assessments on both midpoint and endpoint levels. This study compares different potential LCIA results using the midpoint and endpoint approaches of ReCiPe based on the assessment of a commercial building in Hong Kong.

Methods

This paper examines 23 materials accounting for over 99 % of the environmental impacts of all the materials consumed in commercial buildings in Hong Kong. The midpoint and endpoint results are compared at the normalization level. A commercial building in Hong Kong is further studied to provide insights as a real case study. The ranking of impact categories and the contributions from various construction materials are examined for the commercial building. Influence due to the weighting factors is discussed.

Results and discussion

Normalization results of individual impact categories of the midpoint and endpoint approaches are consistent for the selected construction materials. The difference in the two approaches can be detected when several impact categories are considered. The ranking of materials is slightly different under the two approaches. The ranking of impact categories demonstrates completely different features. In the case study of a commercial building in Hong Kong, the contributions from subprocesses are different at the midpoint and endpoint. The weighting factors can determine not only the contributions of the damage categories to the total environment, but also the value of a single score.

Conclusions

In this research, the midpoint and endpoint approaches are compared using ReCiPe. Information is whittled down from the inventories to a single score. Midpoint results are comprehensive while endpoint results are concise. The endpoint approach which provides additional information of damage should be used as a supplementary to the midpoint model. When endpoint results are asked for, a LCIA method like ReCiPe that provides both the midpoint and endpoint analysis is recommended. This study can assist LCA designers to interpret the midpoint and endpoint results, in particular, for the assessment of commercial buildings in Hong Kong.  相似文献   

17.
Goal and Background  LCIA procedures that have been used in the South Africa manufacturing industry include the CML, Ecopoints, EPS and Eco-indicators 95 and 99 procedures. The aim of this paper is to evaluate and compare the applicability of these European LCIA procedures within the South African context, using a case study. Methods  The five European methods have been evaluated based on the applicability of the respective classification, characterisation, normalization and weighting approaches for the South African situation. Impact categories have been grouped into air, water, land and mined abiotic resources for evaluation purposes. The evaluation and comparison is further based on a cradle-to-gate Screening Life Cycle Assessment (SLCA) case study of the production of dyed two-fold wool yarn in South Africa. Results and Discussion  Where land is considered as a separate category (CML, Eco-indicator 99 and EPS), the case study highlights this inventory constituent as the most important. Similarly, water usage is shown as the second most important in one LCIA procedure (EPS) where it is taken into account. However, the impact assessment modelling for these categories may not be applicable for the variance in South African ecosystems. If land and water is excluded from the interpretation, air emissions, coal usage, ash disposal, pesticides and chrome emissions to water are the important constituents in the South African wool industry. Conclusions  In most cases impact categories and procedures defined in the LCIA methods for air pollution, human health and mined abiotic resources are applicable in South Africa. However, the relevance of the methods is reduced where categories are used that impact ecosystem quality, as ecosystems differ significantly between South Africa and the European continent. The methods are especially limited with respect to water and land resources. Normalisation and weighting procedures may also be difficult to adapt to South African conditions, due to the lack of background information and social, cultural and political differences. Recommendations and Outlook  Further research is underway to develop a framework for a South African LCIA procedure, which will be adapted from the available European procedures. The wool SLCA must be revisited to evaluate and compare the proposed framework with the existing LCIA procedures.  相似文献   

18.
Life Cycle Impact Assessment describes indicators and does not predict actual impacts. The value of an LCA is its comprehensive review of all stages of a product’s life cycle and its synoptic view of all relevant environmental issues. The current version of the 14042 draft describes the uniqueness of Life Cycle Impact Assessment approach which is distinct from other assessment techniques. The wording was designed to help users of the standard understand how and why LCIA is distinct from other assessment methods. In closing, we would like to highlight our opinion that the present document on the level of a DIS is sound, stable and practical within the ISO 14040 series of standards. We do not agree withHertwich & Pease that the present document prevents the use of LCIA. It makes a choice regarding the exclusion of weighting across categories in order to prevent misuse in deriving inappropriate claims. And for characterisation it has achieved a well founded synthesis. In addition, we strongly believe that this standard will stimulate the international scientific discussion of LCA and will substantially contribute to enhanced and more valuable applications of LCA in the future.  相似文献   

19.

Purpose

Topsoil erosion due to land use has been characterised as one of the most damaging problems from the perspective of soil-resource depletion, changes in soil fertility and net soil productivity and damage to aquatic ecosystems. On-site environmental damage to topsoil by water erosion has begun to be considered in Life Cycle Assessment (LCA) within the context of ecosystem services. However, a framework for modelling soil erosion by water, addressing off-site deposition in surface water systems, to support life cycle inventory (LCI) modelling is still lacking. The objectives of this paper are to conduct an overview of existing methods addressing topsoil erosion issues in LCA and to develop a framework to support LCI modelling of topsoil erosion, transport and deposition in surface water systems, to establish a procedure for assessing the environmental damage from topsoil erosion on water ecosystems.

Methods

The main features of existing methods addressing topsoil erosion issues in LCA are analysed, particularly with respect to LCI and Life Cycle Impact Assessment methodologies. An overview of nine topsoil erosion models is performed to estimate topsoil erosion by water, soil particle transport through the landscape and its in-stream deposition. The type of erosion evaluated by each of the models, as well as their applicable spatial scale, level of input data requirements and operational complexity issues are considered. The WATEM-SEDEM model is proposed as the most adequate to perform LCI erosion analysis.

Results and discussion

The definition of land use type, the area of assessment, spatial location and system boundaries are the main elements discussed. Depending on the defined system boundaries and the inherent routing network of the detached soil particles to the water systems, the solving of the multifunctionality of the system assumes particular relevance. Simplifications related to the spatial variability of the input data parameters are recommended. Finally, a sensitivity analysis is recommended to evaluate the effects of the transport capacity coefficient in the LCI results.

Conclusions

The published LCA methods focus only on the changes of soil properties due to topsoil erosion by water. This study provides a simplified framework to perform an LCI of topsoil erosion by considering off-site deposition of eroded particles in surface water systems. The widespread use of the proposed framework would require the development of LCI erosion databases. The issues of topsoil erosion impact on aquatic biodiversity, including the development of characterisation factors, are now the subject of on-going research.  相似文献   

20.

Background, aim, and scope  

Impact assessment can be completed with the help of Life Cycle Impact Assessment (LCIA) as a part of Life Cycle Assessment (LCA) and External Cost Assessment methods. These methods help, for project and product classifications, to protect human health and the environment. Comparison of different impact assessment methods along parallel evaluations of real air pollution case studies helps to detect similarities and dependencies between them. The comparison helps and supports the work in both areas by mutually exploiting the merits of both methods. On the other hand, the detected similarities and dependencies also support the accuracy of the assessment work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号