首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (E crit) allowed by the soil-leaf continuum. We expected that trees on both soils would approach E crit during drought. Trees in sand, however, should face greater drought limitation because of steeply declining hydraulic conductivity in sand at high soil water potential (Ψ S). Transport considerations suggest that trees in sand should have higher root to leaf area ratios (A R:A L), less negative leaf xylem pressure (Ψ L), and be more vulnerable to xylem cavitation than trees in loam. The A R:A L was greater in sand versus loam (9.8 vs 1.7, respectively). This adjustment maintained about 86% of the water extraction potential for both soils. Trees in sand were more deeply rooted (>1.9 m) than in loam (95% of roots <0.2 m), allowing them to shift water uptake to deeper layers during drought and avoid hydraulic failure. Midday Ψ L was constant for days of high evaporative demand, but was less negative in sand (–1.6 MPa) versus loam (–2.1 MPa). Xylem was more vulnerable to cavitation in sand versus loam trees. Roots in both soils were more vulnerable than stems, and experienced the greatest predicted loss of conductivity during drought. Trees on both soils approached E crit during drought, but at much higher Ψ S in sand (<–0.4 MPa) than in loam (<–1.0 MPa). Results suggest considerable phenotypic plasticity in water use traits for P. taeda which are adaptive to differences in soil porosity. Received: 28 December 1999 / Accepted: 31 March 2000  相似文献   

2.
Climate-driven changes in biomass allocation in pines   总被引:8,自引:0,他引:8  
Future increases in air temperature resulting from human activities may increase the water vapour pressure deficit (VPD) of the atmosphere. Understanding the responses of trees to spatial variation in VPD can strengthen our ability to predict how trees will respond to temporal changes in this important variable. Using published values, we tested the theoretical prediction that conifers decrease their investment in photosynthetic tissue (leaves) relative to water‐conducting tissue in the stem (sapwood) as VPD increases. The ratio of leaf/sapwood area (AL/AS) decreased significantly with increasing VPD in Pinus species but not in Abies, Pseudotsuga, Tsuga and Picea, and the average AL/AS was significantly lower for pines than other conifers (pines: 0.17 m2 cm?2; nonpines: 0.44 m2 cm?2). Thus, pines adjusted to increasing aridity by altering above‐ground morphology while nonpine conifers did not. The average water potential causing a 50% loss of hydraulic conductivity was ?3.28 MPa for pines and ?4.52 MPa for nonpine conifers, suggesting that pines are more vulnerable to xylem embolism than other conifers. For Pinus ponderosa the decrease in AL/AS with high VPD increases the capacity to provide water to foliage without escalating the risk of xylem embolism. Low AL/AS and plasticity in this variable may enhance drought tolerance in pines. However, lower AL/AS with increasing VPD and an associated shift in biomass allocation from foliage to stems suggests that pines may expend more photosynthate constructing and supporting structural mass and carry less leaf area as the climate warms.  相似文献   

3.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

4.
Dwarf mistletoe (Arceuthobium spp.) is a hemiparasite that is said to be the single‐most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and carbon relations were characterized over a range of scale from leaf to whole tree in large (40‐ to 50‐m‐tall) individuals of western hemlock (Tsuga heterophylla (Raf.) Sarg.) that were either heavily infected, or uninfected with hemlock dwarf mistletoe (Arceuthobium tsugense). Specific hydraulic conductivity (ks) of infected branches was approximately half that of uninfected branches, yet leaf‐specific conductivity (kL) was similar because leaf area : sapwood area ratios (AL : AS) of infected branches were lower. Pre‐dawn and minimum leaf water potential and stomatal conductance (gs) were similar among infected and uninfected trees because adjustments in hydraulic architecture of infected trees maintained kL despite reduced ks. Maximum whole‐tree water use was substantially lower in infected trees (approximately 55 kg d?1) than in uninfected trees (approximately 90 kg d?1) because reduced numbers of live branches in infected trees reduced whole‐tree AL : AS in a manner consistent with that observed in infected branches. Maximum photosynthetic rates of heavily infected trees were approximately half those of uninfected trees. Correspondingly, leaf nitrogen content was 35% lower in infected trees. Foliar δ13C values were 2.8‰ more negative in infected than in uninfected individuals, consistent with the absence of stomatal adjustment to diminished photosynthetic capacity. Adjustments in hydraulic architecture of infected trees thus contributed to homeostasis of water transport efficiency and transpiration on a leaf area basis, whereas both carbon accumulation and photosynthetic water use efficiency were sharply reduced at both the leaf and whole‐tree scale.  相似文献   

5.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   

6.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

7.
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12‐year‐old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1 Mg C ha?1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF) treatments, respectively. Foliage, fine root and perennial woody tissue (stem, branch, coarse and taproot) respiration accounted for, respectively, 37%, 24%, and 39% of RA in C and I treatments and 38%, 12% and 50% of RA in F and IF treatments. Annual gross primary production (GPP=NPP+RA) ranged from 13.1 to 26.6 Mg C ha?1. The I, F, and IF treatments resulted in a 21, 94, and 103% increase in GPP, respectively, compared to the C treatment. Despite large treatment differences in NPP, RA, and carbon allocation, carbon use efficiency (CUE=NPP/GPP) averaged 0.42 and was unaffected by manipulating site resources. Ecosystem respiration (RE), the sum of Sff, and above ground RA, ranged from 12.8 to 20.2 Mg C ha?1 yr?1. Sff contributed the largest proportion of RE, but the relative importance of Sff decreased from 0.63 in C treatments to 0.47 in IF treatments because of increased aboveground RA. Aboveground woody tissue RA was 15% of RE in C and I treatments compared to 25% of RE in F and IF treatments. Net ecosystem productivity (NEP=GPP‐RE) was roughly 0 in the C and I treatments and 6.4 Mg C ha?1 yr?1 in F and IF treatments, indicating that non‐fertilized treatments were neither a source nor a sink for atmospheric carbon while fertilized treatments were carbon sinks. In these young stands, NEP is tightly linked to NPP; increased ecosystem carbon storage results mainly from an increase in foliage and perennial woody biomass.  相似文献   

8.
We investigated functional coordination between branch hydraulic properties and leaf functional traits among nine miombo woodlands canopy tree species differing in habitat preference and phenology. Specifically, we were seeking to answer the question: are branch hydraulic properties coordinated with leaf functional traits linked to plant drought tolerance in seasonally dry tropical forests and what are the implications for species habitat preference? The hydraulic properties investigated in this study were stem area specific hydraulic conductivity (K S), Huber value (H v), and xylem cavitation vulnerability (??50). The leaf functional traits measured were specific leaf area (SLA), leaf dry matter content (LDMC), and mean leaf area (MLA). Generalists displayed significantly (P?<?0.05) higher cavitation resistance (??50) and SLA, but lower sapwood specific hydraulic conductivity (K S), leaf specific conductivity (K L), MLA, and LDMC than mesic specialists. Although MLA was uncorrelated with ??50, we found significant (P?<?0.05) positive and negative correlations between plant hydraulic properties and leaf functional traits linked to plant drought tolerance ability, indicating that the interactions between branch hydraulics and leaf functional traits related to plant drought tolerance ability may influence tree species habitat preference in water-limited ecosystems.  相似文献   

9.
Hydraulic responses to height growth in maritime pine trees   总被引:12,自引:2,他引:10  
As trees grow taller, decreased xylem path conductance imposes a major constraint on plant water and carbon balance, and is thus a key factor underlying forest productivity decline with age. The responses of stomatal conductance, leaf area: sapwood area ratio (AL : AS) and soil–leaf water potential gradient (ΔΨS–L) to height growth were investigated in maritime pine trees. Extensive measurements of in situ sap flow, stomatal conductance and (non‐gravitational) needle water potential (L = ΨL ? ρwgh) were made during 2 years in a chronosequence of four even‐aged stands, under both wet and dry soil conditions. Under wet soil conditions, L was systematically lower in taller trees on account of differences in gravitational potential. In contrast, under dry soil conditions, our measurements clearly showed that L was maintained above a minimum threshold value of ?2.0 MPa independently of tree height, thus limiting the range of compensatory change in ΔΨS–L. Although a decrease in the AL : AS ratio occurred with tree height, this compensation was not sufficient to prevent a decline in leaf‐specific hydraulic conductance, KL (50% lower in 30 m trees than in 10 m trees). An associated decline in stomatal conductance with tree height thus occurred to maintain a balance between water supply and demand. Both the increased investment in non‐productive versus productive tissues (AS : AL) and stomatal closure may have contributed to the observed decrease in tree growth efficiency with increasing tree height (by a factor of three from smallest to tallest trees), although other growth‐limiting responses (e.g. soil nutrient sequestration, increased respiratory costs) cannot be excluded.  相似文献   

10.
Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis ) and juniper (Juniperus monosperma ) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation‐exclusion (?45% ambient precipitation), and exclusion‐structure control. Supplemental watering elevated leaf water potential, sapwood‐area specific hydraulic conductivity, and leaf‐area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted K L in piñon but not juniper. Piñon and juniper achieved similar K L under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.  相似文献   

11.
We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.  相似文献   

12.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

13.
Plants using the C4 photosynthetic pathway have greater water use efficiency (WUE) than C3 plants of similar ecological function. Consequently, for equivalent rates of photosynthesis in identical climates, C4 plants do not need to acquire and transport as much water as C3 species. Because the structure of xylem tissue reflects hydraulic demand by the leaf canopy, a reduction in water transport requirements due to C4 photosynthesis should affect the evolution of xylem characteristics in C4 plants. In a comparison of stem hydraulic conductivity and vascular anatomy between eight C3 and eight C4 herbaceous species, C4 plants had lower hydraulic conductivity per unit leaf area (KL) than C3 species of similar life form. When averages from all the species were pooled together, the mean KL for the C4 species was 1.60 × 10?4 kg m?1 s?1 MPa?1, which was only one‐third of the mean KL of 4.65 × 10?4 kg m?1 s?1 MPa?1 determined for the C3 species. The differences in KL between C3 and C4 species corresponded to the two‐ to three‐fold differences in WUE observed between C3 and C4 plants. In the C4 species from arid regions, the difference in KL was associated with a lower hydraulic conductivity per xylem area, smaller and shorter vessels, and less vulnerable xylem to cavitation, indicating the C4 species had evolved safer xylem than the C3 species. In the plants from resource‐rich areas, such as the C4 weed Amaranthus retroflexus, hydraulic conductivity per xylem area and xylem anatomy were similar to that of the C3 species, but the C4 plants had greater leaf area per xylem area. The results indicate the WUE advantage of C4 photosynthesis allows for greater flexibility in hydraulic design and potential fitness. In resource‐rich environments in which competition is high, an existing hydraulic design can support greater leaf area, allowing for higher carbon gain, growth and competitive potential. In arid regions, C4 plants evolved safer xylem, which can increase survival and performance during drought events.  相似文献   

14.
As soil and plant water status decline, decreases in hydraulic conductance can limit a plant's ability to maintain gas exchange. We investigated hydraulic limitations for Artemisia tridentata during summer drought. Water use was quantified by measurements of soil and plant water potential ( Ψ ), transpiration and leaf area. Hydraulic transport capacity was quantified by vulnerability to water stress-induced cavitation for root and stem xylem, and moisture release characteristics for soil. These data were used to predict the maximum possible steady-state transpiration rate ( E crit) and minimum leaf xylem pressure ( Ψ crit). Transpiration and leaf area declined by ~ 80 and 50%, respectively, as soil Ψ decreased to –2·6 MPa during drought. Leaf-specific hydraulic conductance also decreased by 70%, with most of the decline predicted in the rhizosphere and root system. Root conductance was projected to be the most limiting, decreasing to zero to cause hydraulic failure if E crit was exceeded. The basis for this prediction was that roots were more vulnerable to xylem cavitation than stems (99% cavitation at –4·0 versus –7·8 MPa, respectively). The decline in water use during drought was necessary to maintain E and Ψ within the limits defined by E crit and Ψ crit.  相似文献   

15.
It has been reported that elevated temperature accelerates the time‐to‐mortality in plants exposed to prolonged drought, while elevated [CO2] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO2] and temperature on the inter‐dependent carbon and hydraulic characteristics associated with drought‐induced mortality in Eucalyptus radiata seedlings grown in two [CO2] (400 and 640 μL L?1) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO2] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO2], may be the primary contributors to drought‐induced seedling mortality under future climates.  相似文献   

16.
The hydraulic limitation hypothesis proposes that (1) reduced growth in taller trees is caused by decreased photosynthesis resulting from a decrease in hydraulic conductance promoted by a longer root‐to‐leaf flow path, and (2) this mechanism reduces stand productivity after canopy closure. This hypothesis was tested by comparing the physiology of 7 m (1 year) and 26 m (5 year) Eucalyptus saligna plantations where above‐ground productivity for the 26 m trees was approximately 69% of that for the 7 m trees, and water and nutrients were not limiting. The study compared whole tree physiology [water flux (Ql), average crown conductance (GT), crown hydraulic conductance per unit leaf area (KL), carbon isotope discrimination (δ13C)] and leaf physiology under light saturation (leaf water potential at the canopy top (ΨLEAF), photosynthetic capacity (Amax), and photosynthesis (A) and stomatal conductance (gs). KL was 50% lower in the taller trees, but whole tree Ql and GT were the same for the 7 m and 26 m trees. Photosynthetic capacity was the same for leaves at the canopy top, but δ13C was ?1.8‰ lower for the 26 m trees. A and gs were either lower in the taller trees or equal, depending on sampling date. The taller trees maintained 0.8 MPa lower ΨLEAF during the day and had 2.6‐times higher sapwood area per unit leaf area; these factors compensated for the effects of increased height and gravitational potential in the taller trees to maintain higher GT. The hydraulic limitation hypothesis (as originally stated) failed to explain the sharp decline in net primary productivity after canopy closure in this study. The effects of increased height appear to be a universal hydraulic problem for trees, but compensation mitigated these effects and maintained Ql and GT in the present study. Compensation may induce other problems (such as lower ΨLEAF or higher respiratory costs) that could reduce carbon gain or shift carbon allocation, and future studies of hydraulic limitation should consider compensation and associated carbon costs. In this study, the combination of similar GT and lower δ13C for the 26 m trees suggests that total crown photosynthesis was lower for the 26 m trees, perhaps a result of the lower ΨLEAF.  相似文献   

17.
Plant water relations, xylem anatomy and the hydraulic architecture of 1‐year‐old twigs of Spartium junceum, both healthy and affected by a phytoplasm disease, were studied. The disease causes twigs to be either shortened (witches broom disease, WBD) or flat (fasciate disease, FD). WBD twigs show a sevenfold increase in total leaf area, smaller and shorter xylem conduits, a higher stomatal conductance (gl) and a decline of minimum leaf water potentials ( Ψ l) below the turgor loss point. FD twigs had nearly twice the leaf area of the healthy controls as well as high gl values and Ψ l values below the turgor loss point. Moreover, significant differences between healthy and affected twigs in stem stomatal conductance (gs) and in the total stem area were recorded. Affected twigs die back under drought stress, which is explained by a pronounced loss of hydraulic conductivity of the infected stems (40 and 60%) in FD and WBD as well as by the unfavourable ratio of weighted conduit radius ( Σ r4) to total surface area (At), so that the efficiency of the stem in supplying the whole transpiring area with water is strongly reduced.  相似文献   

18.
Xylem structure and function are well described in woody plants, but the implications of xylem organization in less‐derived plants such as ferns are poorly understood. Here, two ferns with contrasting phenology and xylem organization were selected to investigate how xylem dysfunction affects hydraulic conductivity and stomatal conductance (gs). The drought‐deciduous pioneer species, Pteridium aquilinum, exhibits fronds composed of 25 to 37 highly integrated vascular bundles with many connections, high gs and moderate cavitation resistance (P50 = ?2.23 MPa). By contrast, the evergreen Woodwardia fimbriata exhibits sectored fronds with 3 to 5 vascular bundles and infrequent connections, low gs and high resistance to cavitation (P50 = ?5.21 MPa). Xylem‐specific conductivity was significantly higher in P. aqulinium in part due to its wide, efficient conduits that supply its rapidly transpiring pinnae. These trade‐offs imply that the contrasting xylem organization of these ferns mirrors their divergent life history strategies. Greater hydraulic connectivity and gs promote rapid seasonal growth, but come with the risk of increased vulnerability to cavitation in P. aquilinum, while the conservative xylem organization of W. fimbriata leads to slower growth but greater drought tolerance and frond longevity.  相似文献   

19.
Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long‐lived trees differ depending on the time scale considered, and short‐term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf‐scale physiological traits, branch‐scale hydraulic traits, and stand‐scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long‐term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long‐lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation.  相似文献   

20.
We investigated whether the degree of light inhibition of leaf respiration (R) differs among large Eucalyptus saligna grown in whole‐tree chambers and exposed to present and future atmospheric [CO2] and summer drought. Associated with month‐to‐month changes in temperature were concomitant changes in R in the light (Rlight) and darkness (Rdark), with both processes being more temperature dependent in well‐watered trees than under drought. Overall rates of Rlight and Rdark were not significantly affected by [CO2]. By contrast, overall rates of Rdark (averaged across both [CO2]) were ca. 25% lower under drought than in well‐watered trees. During summer, the degree of light inhibition of leaf R was greater in droughted (ca. 80% inhibition) than well‐watered trees (ca. 50% inhibition). Notwithstanding these treatment differences, an overall positive relationship was observed between Rlight and Rdark when data from all months/treatments were combined (R2 = 0.8). Variations in Rlight were also positively correlated with rates of Rubisco activity and nitrogen concentration. Light inhibition resulted in a marked decrease in the proportion of light‐saturated photosynthesis respired (i.e. reduced R/Asat). Collectively, these results highlight the need to account for light inhibition when assessing impacts of global change drivers on the carbon economy of tree canopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号