首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
To achieve its maximum organ growth potential, an organ mustgrow at its potential relative growth rate (RGR) throughoutdevelopment. When resource availability limits growth, the RGRis reduced below the potential RGR. This study examines whether,following a period of resource-limited growth, the RGR is ableto increase to the potential RGR when sufficient resources areavailable. Fruit RGRs of a late maturing peach cultivar wereexamined following removal of most of the fruits (heavy thinning)from previously unthinned trees in Apr., May, and Jun. The fruitRGRs after imposition of the thinning treatments were higherthan those on unthinned trees during source-limited periodsof the growing season, suggesting that fruit RGR can increasein response to increased resource availability. In general,the RGRs of fruits of trees thinned in Apr., May, and Jun. didnot exceed those of fruits on trees thinned at bloom, suggestingthat heavy thinning at bloom provides a reasonable estimateof the potential RGR. There were times, however, when the effectsof competition with vegetative sinks were apparent, suggestingthat the RGR of fruits on trees that were heavily thinned atbloom may underestimate the potential RGR during these times.The absolute growth rates of fruits on thinned trees were greaterthan those on unthinned trees, but generally were not greaterthan those on trees that were thinned at bloom, suggesting thatpeach fruits are unable to recover potential growth lost duringresource-limited growth periods.Copyright 1995, 1999 AcademicPress Prunus persica (L.) Batsch, peach, maximum fruit growth potential, relative growth rate, absolute growth rate, thinning, fruit-fruit competition, resource availability, resource limitation, growth analysis  相似文献   

2.
The maximum vegetative growth potential of two peach [Prunuspersica (L.) Batsch] cultivars that differ in the timing ofresource demand for reproductive growth was determined in termsof stem extension, stem and leaf dry weight accumulation, andtrunk radial increment on defruited trees. The maximum vegetativegrowth potentials were similar on the two cultivars indicatingthat the greater partitioning of dry weight to vegetative growthfrequently observed on early maturing cultivars compared tolate maturing cultivars is the result of a shorter period ofcompetition between reproductive and vegetative growth, ratherthan a genetic difference in vegetative growth potential. Onboth cultivars, stem extension and leaf dry weight accumulationceased in mid-summer, however stem dry weight accumulation andtrunk radial increment increase continued through the autumn. The presence of fruit did not have a detectable effect on thefinal stem length, stem dry weight or leaf dry weight on theearly maturing cultivar, but it reduced final stem length anddry weight by 43 and 56%, respectively on the late maturingcultivar. The presence of fruit did decrease stem length, stemdry weight and leaf dry weight on the early maturing cultivarfor 1 month prior to and 1 month after fruit harvest. Fruitdecreased final trunk radial increment by 42 and 77% on theearly and late maturing cultivars, respectively. These reductionsin vegetative growth indicate that resource partitioning tovegetative growth was reduced by competition with fruit growth. Comparison of stem relative extension rates and stem and leafrelative growth rates on fruited and defruited trees indicatedthat vegetative growth was resource-limited shortly after vegetativebud break on fruited trees of both cultivars. This period ofresource-limited vegetative growth corresponded to a periodof resource-limited fruit growth identified in an earlier study.During the period of resource-limited vegetative growth, assimilatesupply was low due to low leaf area index, and carbohydratedemand was relatively high due to high vegetative and reproductivegrowth potentials, creating resource-limited growth conditions.Copyright1995, 1999 Academic Press Maximum vegetative growth potential, carbon economy, partitioning, resource availability, resource limitation, source-limited growth, growth analysis, relative growth rate, peach, Prunus persica (L.) Batsch  相似文献   

3.
We describe an approach for determining the degree of sink and source limitations on peach ( Prunus persica L. Batsch) fruit growth during several growth periods. Source limitations on fruit growth may be due to either a shortfall in assimilate supply within the tree (supply limitation) or to a deficiency in the capacity of the translocation system to deliver assimilates in sufficient quantity to support the maximum fruit growth rate (transport/competition limitation). To ascertain the potential maximum rate of fruit growth, fruit thinning treatments were used. One month after bloom, the number of fruits per tree was adjusted to between 50 and 700 on an early and a late maturing peach cultivar (cvs Spring Lady and Cal Red, respectively). Rates of potential sink demand, potential source supply and actual fruit growth were estimated from sequential harvests of all fruits on 42 trees on two (Spring Lady) and three (Cal Red) dates. These values were used to estimate the proportion of potential growth achieved, and the supply and transport/competition limitations on fruit growth. The results indicated that source limitations were significant on trees with moderate to high fruit numbers. These source limitations were due to supply limitations during all harvest intervals and to transport/competition limitations during the early harvest intervals. Sink limitations occurred to the greatest extent during the mid-period of fruit growth on the later maturing cultivar.  相似文献   

4.
Weekly measurements of fruit growth, fruit respiration and shoot extension growth were made in the field on early (June Lady) and late (O'Henry) maturing cultivars of peach ( Prunus persica L. Batsch). The seasonal patterns of fruit growth and respiration for the two cultivars were very similar except that the early maturing cultivar bloomed a few days earlier than the late cultivar and had a shorter intermediate stage (Stage II) of fruit growth. Maximum rates of fruit respiration per unit weight at 20°C were similar for both cultivars during the first two stages of fruit growth but higher for the early cultivar during the final stage of fruit growth. Maximum fruit growth rates within any particular stage of fruit growth were similar for both cultivars, but the mean fruit weight of the late cultivar was greater at the end of Stage II, because of the extended length of this stage compared to the early cultivar. The final stage of most rapid fruit growth and respiration coincided with the period of most rapid shoot extension growth in the early maturing cultivar but occurred after this period in the late maturing cultivar. Genetic selection for early fruit maturity in peach has apparently had little effect on timing of shoot growth and this may result in increased competition between vegetative and reproductive sinks during peak periods of fruit growth in early maturing cultivars.  相似文献   

5.
Interest in phenolic compounds of fruit is growing due to their positive effects on reducing the risk of cardiovascular and carcinogen diseases. The role of the flesh colour, of the tissue (exocarp or mesocarp) and of the cultivar on the content of phenolic compounds (hydroxycinnamic acids, flavan-3-ols, flavonols) was evaluated in peach, Prunus persica (L.) Batsch, with a HPLC-DAD analysis, on 10 varieties deriving from the Italian breeding programmes, never previously characterized by this approach. The flavan-3-ols (catechin, epicatechin and procyanidin B1) were the most abundant class of phenolic compounds in peach cultivars analysed. Among hydroxycinnamic acids, neochlorogenic and chlorogenic acids were also identified and measured in the peach cultivars analysed. Quercetin-3-O-rutinoside was the only flavonol found in the exocarp of all the cultivars evaluated, but in the mesocarp of only some cultivars. Content of phenolic compounds was confirmed to be strongly dependent on the cultivar and, in general, the content was significantly higher in exocarp than in mesocarp. An overall significant difference in phenolic compounds as associated with flesh colour was not observed.  相似文献   

6.
The dynamics of N uptake and N partitioning in peach (Prunus persica, Batsch) trees of a very early (cv. Flordastar) and a very late (cv. Tudia) fruit ripening varieties grown under a mediterranean climate was assessed during one season. Labelled N was applied to two-year old potted trees which were destructively harvested at regular intervals during the vegetative and reproductive cycle. Tree phenology as well as vegetative and reproductive growth of the two genotypes strongly differed: bud burst started in late January in Flordastar and late March in Tudia. Leaf senescence in Flordastar was almost complete by mid October, while Tudia still retained a significant fraction of leaves at the December harvest. Fruit yield averaged 4.0 and 6.9 kg tree–1 (fresh weight) in cv. Flordastar and Tudia, respectively, and fruit size was within commercial standards for the two genotypes. After growth resumption, shoot and fruit growth mainly relied on N remobilised from reserves, which accounted for 72–80% of total N in new growth. Nitrogen uptake by both genotypes was relatively low in the first month after bud burst, then was more rapid until the end of the season. Total labelled N uptake did not differ between the two genotypes and accounted on average for 65–70% of total N supplied. The kinetics of labelled N uptake were similar in the two varieties despite the great difference in the timing of their fruit ripening. Leaves were the main sink for N during much of the experimental period. The fruits, when present, also used a significant fraction of the absorbed N, which was almost constant until fruit ripening in Flordastar. Nitrogen partitioning to leaves declined progressively after summer, when a greater fraction of the absorbed N was recovered in the twigs, the trunk, the fine roots and especially in the coarse roots. The data provide evidence for guiding the kinetics of N supply to peach orchards under a Mediterranean climate.  相似文献   

7.
The seasonal patterns in concentrations of both soluble (NSC-S)and insoluble (NSC-I) non-structural carbohydrates, in 3-year-oldpeach trees (Prunus persica L. Batsch) grown in sand cultureare described. The ability of trees to mobilize their carbohydratereserves in response to scion-trunk girdling, which preventsphotosynthate transport toward the roots, was tested at fourphenological stages. Girdling induces a NSC-I depletion in rootsand rootstock-trunk bark and a NSC-I accumulation in leavesand shoots. On the contrary, the NSC-S concentrations of theorgans located both above and below girdling were not significantlyaffected by the treatment. Consequently, when phloem transportbreaks down, trees, whatever their growing stage, mobilize carbohydratereserves below the girdle to maintain the soluble sugar contentsat the same level as in control trees. Key words: Girdling, non-structural carbohydrates, Prunus persica L., carbon reserves, seasonal patterns  相似文献   

8.
NII  N. 《Annals of botany》1997,79(2):139-144
Changes in contents of nonstructural carbohydrates in leaves,as well as some characteristics of leaves before and after fruitremoval, were investigated in potted peach (Prunus persica L.)trees. Leaf area and dry mass per unit leaf area (SLW) at thefruit-maturation stage decreased with increasing numbers ofpeaches per tree, whereas the chlorophyll content per unit areain leaves of fruiting trees increased. The chlorophyll contentdecreased more rapidly upon removal of fruit than that in leavesof fruiting trees. The starch content per unit dry mass in leavesof fruiting trees at the fruit-maturation stage was lower thanthat in leaves of non-fruiting trees. Starch accumulated significantlyin leaves within 1 d of removal of fruit during the fruit-maturationstage and continued to increase thereafter. The accumulationof starch after removal of fruit occurred more rapidly thanthe decrease in chlorophyll content. Reducing and non-reducingsugars (total sugars) per unit dry mass in the leaves were higherin fruiting trees than in non-fruiting trees. After fruit removal,the total sugar content of leaves increased temporarily andthen gradually decreased. The sorbitol content per unit freshmass in leaves of fruiting trees during the fruit-maturationstage was slightly higher than that in leaves of non-fruitingtrees. One day after removal of fruit, the sorbitol contentincreased in parallel with the accumulation of starch and remainedhigh. The sucrose content of leaves did not change markedlyupon removal of fruit. Prunus persica L.; peach leaves; nonstructural carbohydrate; starch and sorbitol; fruit removal  相似文献   

9.
A Space-time Model of Carbon Translocation along a Shoot Bearing Fruits   总被引:3,自引:1,他引:2  
A carbon-based model is described of the source-sink relationshipsof a stem bearing fruits in space and time and focusing on growthvariability along the branch. The novelty of the model comesfrom the aggregation of physiological processes taking intoaccount spatial aspects. The stem is represented as a set ofcompartments (metamers) connected to source (leafy shoots) andsink (fruits) compartments. Each leafy shoot forms one compartment.The fruit consists of three compartments involved in translocation(cytoplasm), structure (cell wall) and storage (vacuole). Physiologicalprocesses considered are photosynthesis, respiration of fruitsand leaves, translocation of assimilates and fruit growth. Assimilateproduction is regulated by sink strength. Carbon translocationbetween two compartments depends on the gradient of assimilateconcentration. The gradient induces carbon translocation fromthe most to the least concentrated compartment, except for thevacuole compartment into which translocation is possible whateverthe concentration gradient. Fruit growth, in terms of freshweight, results from the phloem water supplied to the fruitaccording to the concentration gradient between the fruit andthe stem. The model is calibrated for peach trees by comparingobserved and simulated fruit dry and fresh weights for a shootwith normal fruit load. The model simulates variability betweenpeach fruits and the effect of contrasting fruit loads. Accordingto this model, photosynthesis increases and assimilate concentrationsin leaves and phloem decrease with decreasing leaf:fruit ratioas reported in the literature. Simulated concentrations of assimilatesin the phloem range from 2 to 14%. Simulated concentration gradientsand specific mass transfer for peach trees range from 0.05 to0.17 g cm-3m-1and from 0 to 3 g cm-2h-1, respectively, and areof the same order of magnitude as those reported for variousother tree species. The model is used to analyse the effectof fruit position relative to the leaves. Copyright 1999 Annalsof Botany Company Peach tree, Prunus persica (L.) Batsch, model, carbohydrates, translocation, source-sink, fruit.  相似文献   

10.
The aim of this paper was to test the possibility of scheduling regulated deficit irrigation (RDI) using exclusively maximum daily trunk shrinkage (MDS) measurements, and that RDI strategies can be applied in early maturing peach trees reducing significantly the seasonal water use. During three growing seasons, 6-year-old peach trees (Prunus persica (L.) Batsch cv. Flordastar) grafted on P. persica × P. amygdalus GF-677 peach rootstock were submitted to different drip irrigation treatments. Control (T0) plants were irrigated above the estimated crop evapotranspiration level (≈130% ETC) and T1 plants were submitted to RDI, which were irrigated in order to maintain MDS signal intensity (SI) values close to unity (no irrigation-related stress) from the fruit thinning stage to 2 weeks after harvest, at MDS SI values close to 1.3 during the early postharvest period, and at MDS SI values of 1.6 during the late postharvest period. The RDI strategy assayed reduced the seasonal water applied by 35-42% with respect to estimated ETC without affecting yield efficiency components or the distribution of different peach fruit categories, while improving water productivity. The only vegetative growth component affected by RDI was pruning weight, indicating that vigor regulation as a result of RDI may decrease the competition for assimilates between vegetative apexes and reserve tissues. Also, the absence of any significant effect of RDI on the ratio between yield and the increase in trunk cross sectional area suggested similar carbon partitioning schemes during fruit growth. To improve the precision of MDS SI-driven schedule in RDI strategies changes in the irrigation protocol should be considered so that the scheduled water deficit levels are attained more rapidly. For this, when it is necessary to change from a MDS SI threshold value to a higher one, the daily irrigation rate should be decreased by more than 3%.  相似文献   

11.
12.
The synthesis of organic acids was studied during fruit development of two peach ( Prunus persica L. Batsch) cultivars, Fantasia and Jalousia, having fruits with high and low organic acid content, respectively. The malate content was higher in cv. Fantasia than in cv. Jalousia at the end of the first rapid growth stage (50 days after bloom [DAB]). Malate and citrate contents were higher in Fantasia than in Jalousia during the second rapid growth stage (from 100 DAB to maturity). The expression of phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), which is involved in organic acid synthesis, was studied during peach fruit development. PEPC mRNA levels, and protein levels on a total soluble protein basis, peaked at 23 and 108 DAB in Fantasia. In Jalousia, they were very low at 23 DAB and reached levels similar to Fantasia at 108 DAB. For both cultivars, in vitro PEPC activity expressed on a dry weight basis was maximal at 24 DAB, decreased from 24 to 60 DAB, and then remained constant. The activity of peach fruit PEPC appeared extremely sensitive to malate (I0.5 of 100 μ M for Fantasia and 65 μ M for Jalousia at pH 7.3) and low pH. PEPC may participate in the control of organic acid accumulation during fruit development in the normal-acid fruit of Fantasia. However, mechanisms other than organic acid synthesis might account for the differences in acidity between normal-acid and non-acid peach fruit.  相似文献   

13.
Sylleptic branching of main axes was investigated in three peachtree cultivars ('Armking', 'Flavorcrest' and 'Silvergem') duringthe first year of growth. An axis was considered as made upof a series of metamers (internode, node, leaf and associatedbud) and its growth was divided into two components: the increaseof the number of metamers and the lengthening of the metamersthemselves (elongation). The relationship between branchingprobability, type of cultivar, growth components and date ofmetamer production was studied by logistic regression. Branchingprobability varied according to the cultivar, increased whenthe growth components did, and decreased if metamers appearedlate in the season. The logistic model fitted the data closelyand was validated on a data set that had not been used for estimatingthe parameters. Ninety-four percent of branched and 70% of unbranchedmetamers were correctly predicted by the logistic model. Forany given growth rate and date of metamer production, the mainaxes branched most and least often in the 'Flavorcrest' and'Silvergem' cultivars, respectively.Copyright 1994, 1999 AcademicPress Peach tree, Prunus persica (L.) Batsch, branching, syllepsis, shoot growth, quantitative analysis, logistic regression  相似文献   

14.
Two-year-old potted peach ‘Zaojiubao’ (Prunus persica L. Batsch) trees on wild P. persica rootstock were subjected either to regulated deficit irrigation (RDI), in which trees were water stressed during fruit pit hardening (stage II) followed by rewatering during the final rapid fruit growth stage (stage III), or to half-root stress (HRS) treatments during the same two stages. To investigate the allocation of carbon assimilates among sink organs, shoots were fed with 14CO2 twice, either during stage II or stage III. The distribution coefficient (K) represented the competitive sink strength. RDI and HRS induced an altered allocation pattern of 14C-assimilates. The import to shoot apexes was reduced. However, there were no significant reduction in fruit diameter and weight. Moreover, the Ks of the fruit subparts of RDI and HRS treated trees were similar to or sometimes higher than those of CK trees. There were more 14C-assimilates and higher K values of seeds from RDI trees during stage III compared with CK. In addition, stressed roots seemed to have stronger abilities to attract 14C-assimilates. It is concluded that RDI and HRS resulted in a decreased sink activity in the shoot and a change of carbon allocation toward stressed roots and seeds without negative effects on fruit growth.  相似文献   

15.
Immuno-Gold Localization of Indole-3-Acetic Acid in Peach Seedlings   总被引:3,自引:0,他引:3  
The localization of indole-3-acetic acid (IAA) in peach seedlings(Prunus persica [L.] Batsch ‘Momo Daigi Tsukuba 4’)was investigated using immunocytochemical technique. In meristematiccells of root tip, the gold particles were accumulated in nucleolus,while in leaf cells, they were mainly associated to chloroplastsand mitochondria. Physiological meaning of these localizationswas discussed. (Received December 13, 1989; Accepted April 12, 1990)  相似文献   

16.
17.
The relationship between several growth components of a shootand the fates of the axillary meristems (developing in the axilsof the leaves) borne by that shoot were studied, on first-ordershoots of young peach trees. A comprehensive picture of thoserelationships was obtained by a discriminant analysis. Shootgrowth at meristem emergence date was characterized by internodelength, leaf-production rate and leaf-unfolding duration. Allpossible fates of axillary meristems at the end of the growingseason (i.e. blind nodes, single vegetative or flower bud, budassociations, sylleptic or proleptic shoots) were considered.Shoot-elongation rate determined meristem fates quantitatively.The number of buds produced by a meristem increased when theshoot-elongation rate increased. Qualitatively, the fate of axillary meristems was related tothe balance between shoot-growth components. If the subtendingleaf unfolded slowly, sylleptic or proleptic shoots were morelikely to develop than bud associations, for high shoot-elongationrates; and flower buds were more frequent than vegetative buds,for low shoot-elongation rates. Compared to flower buds, blindnodes appeared for similar shoot-elongation rates but longerinternodes and lower leaf-production rates. The emergence dateslightly modified the relation between shoot growth and axillary-meristemfates, but the main features held true throughout the growingseason. The relationships between shoot growth and meristem fates mayresult from competitive interactions between the growing subtendingleaf and the developing axillary meristem. Growing conditionsmight also influence both shoot growth and meristem fates byfavouring either cell enlargement or cell division.Copyright1995, 1999 Academic Press Peach tree, Prunus persica (L.) Batsch, axillary meristem, meristem fate, branching, flowering, shoot growth, discriminant analysis, exploratory analysis  相似文献   

18.

Background and Aims

The aim was to assess the amounts of macro- (N, P, K, Ca and Mg) and micro-elements (Fe, Mn, Cu and Zn) lost by peach trees (Prunus persica L. Batsch) in all the nutrient removal events (pruning, flower abscission, fruit thinning, fruit harvest and leaf fall), as well as those stored in the permanent structures of the tree (roots, trunk and main branches).

Methods

Three peach cultivars were used. The biomass and nutrient composition of materials lost by trees at the different events were measured during 3 years. The biomass and nutrient composition of permanent tree structures were also measured after full tree excavation.

Results

Winter pruning and leaf fall were the events where most nutrients were removed. Nutrient losses and total requirements are given as amounts of nutrients needed per tree and also as amounts necessary to produce a t of fresh fruit.

Conclusions

The allocation of all nutrients analyzed in the different plant parts was similar in different types of peach trees, with each element having a typical “fingerprint” allocation pattern. Peach tree materials removed at tree pruning and leaf fall include substantial amounts of nutrients that could be recycled to improve soil fertility and tree nutrition. Poorly known tree materials such as flowers and fruit stones contain measurable amounts of nutrients.  相似文献   

19.
Three to five-year-old peach trees (Prunus persica (L.) Batschcv. ‘Maycrest’) grafted on P. ‘Damas 1869’grown in a sand trench were removed in the spring and grownhydroponically for several months. The system comprised twobalances continuously recording the mass of the nutrient solutionand that of the tree, so as to estimate transpiration and wateruptake rates separately. Diurnal variation in plant water content(transpiration minus water uptake) was observed, with rapidlydecreasing values when the solar radiation increased, whilethe reverse occurred when radiation decreased. Changes in stemdiameter were continuously recorded using linear variable differentialtransducers. Data collected over several days of contrastingclimatic conditions revealed that rapid changes in the stemdiameter occurred throughout the day and were closely relatedto plant water content. A lag-time not exceeding 10 min wasfound between changes in stem diameter and plant water content.These results are discussed in relation to the use of micromorphometricmethods to control irrigation in fruit trees. Moreover, we givevalues for the water stored in the shoots which may contributeto the transpiration stream. Key words: Prunus persica, stem shrinkage, plant water storage, water uptake, transpiration  相似文献   

20.
Extrafloral nectaries (EFNs) in many plant species produce sugary secretions that commonly attract ants. This research determined the impact of peach (Prunus persica L. Batsch) EFNs on the biological control of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), a key economic pest in peach orchards, and studied interactions of EFNs and ants. Studies (2002-2005) in peach orchards of the mid-Atlantic United States showed that 'Lovell' peach trees with EFNs supported more parasitic Hymenoptera in the spring and increased the parasitism of G. molesta larvae later in the season than those trees without EFNs. Ant exclusion experiments revealed that trees with EFNs harbored fewer G. molesta larvae when ants were permitted access to the tree canopies. Furthermore, the trees with EFNs had approximately 90% less fruit injury by G. molesta, indicating that EFNs have a protective role for the fruit as well. The results show that the combined actions of ants and parasitic Hymenoptera confer an EFN-mediated protective effect spanning the whole fruit growing season. When EFNs are present, naturally occurring biological control agents can reduce damage by G. molesta in peach orchards without insecticide inputs. The EFNs are an important host-plant characteristic that should be retained in future peach cultivar selections as a means of enhancing biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号