首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dramatic changes in neocortical electroencephalogram (EEG) rhythms are associated with the sleep–waking cycle in mammals. Although amphibians are thought to lack a neocortical homologue, changes in rest–activity states occur in these species. In the present study, EEG signals were recorded from the surface of the cerebral hemispheres and midbrain on both sides of the brain in an anuran species, Babina daunchina, using electrodes contacting the meninges in order to measure changes in mean EEG power across behavioral states. Functionally relevant frequency bands were identified using factor analysis. The results indicate that: (1) EEG power was concentrated in four frequency bands during the awake or active state and in three frequency bands during rest; (2) EEG bands in frogs differed substantially from humans, especially in the fast frequency band; (3) bursts similar to mammalian sleep spindles, which occur in non-rapid eye movement mammalian sleep, were observed when frogs were at rest suggesting sleep spindle-like EEG activity appeared prior to the evolution of mammals.  相似文献   

2.
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.  相似文献   

3.
Features of spatial organization of neocortical potentials during mental creating of the original and standard visual images were studied. Intrahemispheric and interhemispheric coherence in different EEG frequency bands and temporal relations between relative changes in the index of linear (correlation coefficient) and non-linear (multiple entropy) processes in different neocortical areas were analysed. Number of decreased coherence values in the high-frequency alpha subband between remote neocortical points during creating of an original image was significantly lower than during creating of a standard image. During creating of the original image, the number of synchronously functioning pairs of neocortical areas and the mean level of linear correlation between the areas were higher, and correlation by the non-linear index, on the contrary, was lower than during creation of the standard image. The correlation between changes in different neocortical areas for both processes during creating of the original image was only positive, and that during creating of the standard image was both positive and negative. The conclusion was made that creative and reproductive types of visual imagination were different in the spatial distribution of coordinated changes in the linear and non-linear processes, mean magnitudes of these changes, and the character of hemispheric interaction. The data on different interhemispheric relations in diagonal and central bilateral directions raise a question about the radial representation of visual imagination.  相似文献   

4.
With the aim to reveal features of the neocortical spatiotemporal organization of potentials characteristic of different genetically predetermined emotional levels, momentary values of EEG potentials were analyzed in inbred rats of MR and MNRA strains. A topogram was described by a basic parameter such as its general level (the mean of momentary values of potentials derived from 24 symmetrical electrodes bilaterally implanted into the brain cortex) and a similarity coefficient (correlation between the set of its momentary values and that of a standard topogram). The general level and similarity coefficient values were calculated for a series of successive topograms individually for the right and left hemisphere. Also, right- and left-side power spectra of these series were calculated. In rats of MR strain, significant (p < 0.05) peaks in the general level and similarity coefficient spectra were observed in the delta (2.0 Hz), teta (6.5 Hz) and alpha (9 Hz) frequency bands. In this strain, the general level power was higher at the right side, and the similarity coefficient power displayed the left-side dominance. In rats of MNRA strain, peaks in the delta(2.0 Hz) band coinsided in the general level and similarity coefficient spectra, whereas, independently, the general level spectra had peaks in the theta band (7.0 Hz), and similarity coefficient had peaks at frequencies 3.0, 4.5, and 6.0 Hz. The left-side general level spectral power was higher than the right-side general level spectral power in the delta and lower in the high-frequency theta bands. The similarity coefficient power displayed the left-side dominance for the peaks in the delta (2.0 Hz) and theta (3.0 Hz) bands, and it displayed the right-side dominance for the peaks in the theta (4.5 Hz) band. The specific features of the cortical spatiotemporal organization of potentials revealed in rats of MR and MNRA strains suggest different modes of functioning of at least two systems, reticulo-thalamo-corticaland hippocampo-cortical.  相似文献   

5.
The B cell response to influenza infection of the respiratory tract contributes to viral clearance and establishes profound resistance to reinfection by related viruses. Numerous studies have measured virus-specific antibody-secreting cell (ASC) frequencies in different anatomical compartments after influenza infection and provided a general picture of the kinetics of ASC formation and dispersion. However, the dynamics of ASC populations are difficult to determine experimentally and have received little attention. Here, we applied mathematical modeling to investigate the dynamics of ASC growth, death, and migration over the 2-week period following primary influenza infection in mice. Experimental data for model fitting came from high frequency measurements of virus-specific IgM, IgG, and IgA ASCs in the mediastinal lymph node (MLN), spleen, and lung. Model construction was based on a set of assumptions about ASC gain and loss from the sampled sites, and also on the directionality of ASC trafficking pathways. Most notably, modeling results suggest that differences in ASC fate and trafficking patterns reflect the site of formation and the expressed antibody class. Essentially all early IgA ASCs in the MLN migrated to spleen or lung, whereas cell death was likely the major reason for IgM and IgG ASC loss from the MLN. In contrast, the spleen contributed most of the IgM and IgG ASCs that migrated to the lung, but essentially none of the IgA ASCs. This finding points to a critical role for regional lymph nodes such as the MLN in the rapid generation of IgA ASCs that seed the lung. Results for the MLN also suggest that ASC death is a significant early feature of the B cell response. Overall, our analysis is consistent with accepted concepts in many regards, but it also indicates novel features of the B cell response to influenza that warrant further investigation.  相似文献   

6.
Emotional stress induced a global activation of the brain electrical activity: a decrease in the power of the theta-, alpha-, and beta-1-frequency bands in animals with active behaviour, and a decrease in the power of the theta- and alpha-frequency bands in animals with behavioural inhibition. The findings suggest that two forms of emotional behaviour correspond to different patterns of the brain activity. Appearance of spindle-like activity in passive animals' parietal and occipital leads suggests a hypothetical suppression in associative parietal and visual neocortical areas involved in processing the sensory information.  相似文献   

7.
Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01–0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01–0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02–0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz). The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04–0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.  相似文献   

8.
Measures of event-related band power such as event-related desynchronization (ERD) are conventionally analyzed within fixed frequency bands, although it is known that EEG frequency varies as a function of a variety of factors. The question of how to determine these frequency bands for ERD analyses is discussed and a new method is proposed. The rationale of this new method is to adjust the frequency bands to the individual alpha frequency (IAF) for each subject and to determine the bandwidth for the alpha and theta bands as a percentage of IAF. As an example, if IAF equals 12 Hz, the widths of the alpha and theta bands are larger as compared to a subject with an IAF of, e.g., only 8 Hz. The results of an oddball paradigm show that the proposed method is superior to methods that are based on fixed frequencies and fixed bandwidths. Received: 22 July 1997 / Accepted in revised form: 22 April 1998  相似文献   

9.
The EEG recording was made when the subjects performed tasks that involved overcoming the stereotype (creative) and retrieving information from memory (noncreative) with the usual and complicated presentation of the initial material (incomplete proverbs and sayings without concluding words). The subjective complexity of the task performance under different conditions was assessed. The EEG power from 19 EEG derivations was compared in the β2 and γ frequency bands. The creative task performance was associated with a marked increase in the EEG power; significantly more complicated noncreative tasks were not accompanied by marked changes in the EEG power in these bands.  相似文献   

10.
OBJECTIVE: To determine if there is any relationship between the atypical squamous cell (ASC):squamous intraepithelial lesion (SIL) ratio and high-risk HPV DNA detection rate. STUDY DESIGN: Data on the frequency of various cytologic diagnoses for each pathologist were retrieved from 2002 to 2003. ASC:SIL ratio for each pathologist was calculated. In addition, data related to high-risk HPV detection rate was obtained during the study period. HPV DNA testing was performed using HC II (Digene, Gaithersburg, Maryland U.S.A). Cases with insufficient quantity were excluded. RESULTS: Five pathologists, with experience ranging from 2 to 15 years, reviewed Pap tests during the study period. For the entire laboratory, the ASC:SIL ratio was 2.0, and the high-risk HPV DNA detection rate in ASC specimens was 31%. For individual pathologists, ASC:SIL ratio ranged from 1.2 to 4.0 and high-risk HPV DNA detection rate from 31% to 38%. No significant correlation was noted between the ASC:SIL ratio and high-risk HP DNA detection rate. CONCLUSION: Our ASC:SIL ratios (except for 1 pathologist) and high-risk HPV DNA detection rates were within an acceptable range. We did not observe any association between ASC:SIL ratio and high-risk HPV detection rate.  相似文献   

11.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10, 17, and 45 Hz frequencies at T4, T3, F3, Cz, and F4 points, respectively, when these points were exposed to magnetic fields with similar frequencies and 100 μT intensity. The paired t-test results showed that power value of EEG did not alter significantly at the frequency of stimulation (P<0.05). Further, significant changes in different EEG bands caused by locally exposing to ELF-MF in different points of brain were observed. The changes in the EEG bands were not limited necessarily to the exposure point.  相似文献   

12.
Merica H  Fortune RD 《PloS one》2011,6(8):e23593
Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP)--in fitting the data well--successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for TIMING the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the PATTERN of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1-4, using data from 30 healthy subjects aged 20-30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG.  相似文献   

13.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10, 17, and 45 Hz frequencies at T4, T3, F3, Cz, and F4 points, respectively, when these points were exposed to magnetic fields with similar frequencies and 100 μT intensity. The paired t-test results showed that power value of EEG did not alter significantly at the frequency of stimulation (P < 0.05). Further, significant changes in different EEG bands caused by locally exposing to ELF-MF in different points of brain were observed. The changes in the EEG bands were not limited necessarily to the exposure point.  相似文献   

14.
Effects of a single wave of the cortical spreading depression (SD) on the ECoG of a waking rabbit was studied with chronically implanted intracortical calomel and silverball epidural electrodes. DC potential shifts and integral electrical activity were recorded monopolary in reference to a nasal-bone electrode. ECoG spectral analysis (FFT) showed that an SD wave was accompanied by a suppression of the neocortical activity in a broad frequency range (0.25-80 Hz). However, the SD-related ECoG depression was a rather short phenomenon (5-7 min) as compared to a following rebound effect, i.e., persistent (1.5-2 h) unilateral exaltation of bioelectrical activity. The spectral power in the delta (6-14 fold) and beta bands (2-6-fold) increased, whereas the high-frequency activity (40-80 Hz) remained suppressed. Similar changes in the contralateral neocortex were poorly pronounced or absent; this resulted in a strong interhemispheric asymmetry. It is suggested that (1) exaltation of the delta activity after SD wave is related not only to a dendrite swelling and changes in the extracellular space structure but to increase in synaptic transmission efficiency, probably, by the type of anoxic potentiation, (2) activation of some subcortical structures by the mechanism of their release from the inhibitory neocortical control is an additional factor of the augmentation of the delta and spindle-like beta activity after an SD wave, and (3) the long-term attenuation of the high-frequency gamma activity is a result of its strong suppression during the SD and its reciprocal relations with the exalted delta activity.  相似文献   

15.
At pairing of isorhythmic stimuli beyond the theta-rhythm frequency limits (3 and 8 Hz), in power spectra of EEGs of the sensorimotor and visual neocortical areas of rabbits, the frequencies are present both of the theta-range and of the stimulation frequency, in the background activity as well as during the stimulation. Both rhythms are in reciprocal relations. The frequency of the theta-rhythm approaches the frequency divisible by that of the stimulation. Under the action of the conditioned stimulus, crosscorrelation coefficients (CC) between the potentials of the areas under study decrease in most cases in comparison to their background values. Combination of the conditioned stimulus with the unconditioned one, leads approximately in equal number of cases to an increase or decrease of CC. After elimination of the stimuli, in most cases CC increases. CC of the background activity does not increase in the course of paired stimuli presentation though a conditioned response is being formed. At presence of stimuli frequency fluctuations simultaneously in the potentials of both areas, the rise of coherence function at this frequency does not occurs always. Thus, the above spectral-correlation parameters of rabbit's cortical potentials differ from those which arise at pairing of continuous nonrhythmic stimuli. This difference is probably due to different characteristics of the stimuli presented.  相似文献   

16.
Resting-state functional magnetic resonance imaging (R-fMRI) has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo), two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz) in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.  相似文献   

17.
Power spectra of short-term (less than 1 s) EEG-reactions (in the frequency band of 1-225 Hz) were studied in dogs in the course of instrumental food conditioning. These reactions were observed in different areas of the cortex in response to positive and differentiated conditioned stimuli. Regional features between the spectra were found both in the power level and frequency structure. The power of the reactions in the visual and parietal areas of the left hemisphere was higher than in the motor areas. Power spectra of reactions to differentiated stimuli were significantly lower than the spectra of reactions to positive stimuli mainly owing to the high-frequency components (80-225 Hz). In these both cases, prestimulus power spectra did not differ. The frequency structure of corresponding EEG-reactions consisted of individual spectral peaks, mainly both gamma (30-80 Hz) and higher-frequency (80-225 Hz) bands.  相似文献   

18.
Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic, it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol > dithioerythritol > [beta]-mercaptoethanol > [beta]-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol.  相似文献   

19.
The rest states with the eyes open (RSEO) and closed (RSEC) were subjected to quantitative EEG study as states similar in the pattern of mental activity and subjective assessments but different in the EEG pattern. The mean values of the spectral power and EEG coherence function were compared in 74 subjects for the following bands: Δ, ?, α1, α2, β1, β2, and γ. Upon the transition from the RSEC to the RSEO, the EEG local power significantly decreased over the whole cortex for the α, ?, and β bands. A simultaneous decrease in the EEG power in all the bands (including β and γ) was most pronounced (as judged by relative changes and tests of significance of difference) in the parietooccipital derivations immediately related to the cortical zones where an increase in the neuronal activity upon opening the eyes is most probable. A significant increase in the EEG power was observed only for the γ band in frontal derivations F 3 and F 4. Significant differences in the mean EEG coherence in the RSEO-RSEC comparison were present in many derivation pairs, especially in the α2, β1, β2, and γ bands. For each of these bands, the number of differences determined on the basis of Fisher test was more than 70% of the maximum possible number. In the overwhelming majority of cases, the coherence was lower in the RSEO; however, in the caudal cortical zones, a higher coherence in the α1, ?, and Δ bands in the RSEO was rather typical. The results confirmed that the two states under study differ in a number of averaged EEG parameters with high statistical significance and may be used as reference states during performance of tasks with the eyes open and closed, respectively. The differences between the RSEC and the RSEO may be caused by the fact that the RSEC is a functional state oriented predominantly to the analysis of internal information (internally oriented), and the RSEO, predominantly to the analysis of information coming from the outside (externally oriented). The pattern of the observed EEG differences points to a combination of effects both localized in the visual zone and reflecting changes in the network cortical activity, i.e., simultaneous, although nonuniform, changes over all the main zones of the cortex. Comparison of the results with published estimations of differences in the local cerebral blood flow (ICBF) between the RSEO and the RSEC shows that increase in the ICBF may be associated with a local decrease in the EEG spectral power in any frequency band, including the high-frequency β and γ bands, or several frequency bands simultaneously.  相似文献   

20.
Changes in spatial organization of EEG activity were analyzed in 44 humans during active 1-h hyperventilation using cyclic or circular breath (CB) technique similar to rebirthing breath technique. The dynamics of different indices was recorded each 5 min (using 12 time slots). A double-humped pattern of changes in spatial organization indices (linear processes) and spatial disorder (nonlinear processes) of biopotentials: an initial decrease within 1 to 20–30 min and a second one from 35–40 min to the end of session. A complex dynamics of spatial frequency processes (coherence and spectral power of biopotentials) with different pattern of changes within narrow frequency EEG bands. The dynamics of the spatial organization of EEG indices proved to depend on the intensity of hyperventilation-induced paroxysmal activity. The indices of spatial synchronization and disorder of biopotentials as well as low frequency β-activity (16.00–22.50 Hz) decreased more at the background of high rather than low paroxysmal activity, while the low frequency components (Δ and Θ) and high frequency α-activity (11.25–12.50 Hz) increased more. The obtained data are considered in terms of specific consciousness state induced by CB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号