共查询到20条相似文献,搜索用时 0 毫秒
1.
Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis 总被引:13,自引:0,他引:13
Human ferrochelatase, a mitochondrial membrane-associated protein, catalyzes the terminal step of heme biosynthesis by insertion of ferrous iron into protoporphyrin IX. The recently solved x-ray structure of human ferrochelatase identifies a potential binding site for an iron donor protein on the matrix side of the homodimer. Herein we demonstrate Hs holofrataxin to be a high affinity iron binding partner for Hs ferrochelatase that is capable of both delivering iron to ferrochelatase and mediating the terminal step in mitochondrial heme biosynthesis. A general regulatory mechanism for mitochondrial iron metabolism is described that defines frataxin involvement in both heme and iron-sulfur cluster biosyntheses. In essence, the distinct binding affinities of holofrataxin to the target proteins, ferrochelatase (heme synthesis) and ISU (iron-sulfur cluster synthesis), allows discrimination between the two major iron-dependent pathways and facilitates targeted heme biosynthesis following down-regulation of frataxin. 相似文献
2.
Ishikawa H Nakagaki M Bamba A Uchida T Hori H O'Brian MR Iwai K Ishimori K 《Biochemistry》2011,50(6):1016-1022
We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single "heme-regulatory motif", HRM, and plays a key role in the iron homeostasis of a nitrogen-fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where (29)Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside of the HRM. The Raman line for the Fe-S stretching mode observed at 333 cm(-1) unambiguously confirmed heme binding to Cys. The lower frequency of the Fe-S stretching mode corresponds to the weaker Fe-S bond, and the broad Raman line of the Fe-S bond suggests multiple configurations of heme binding. These structural characteristics are definitely different from those of typical hemoproteins. The unusual heme binding in Irr was also evident in the EPR spectra. The characteristic g-values of the 5-coordinate Cys-ligated heme and 6-coordinate His/His-ligated heme were observed, while the multiple configurations of heme binding were also confirmed. Such multiple heme configurations are not encountered for typical hemoproteins where the heme functions as the active center. Therefore, we conclude that heme binding to HRM in the heme-regulated protein, Irr, is quite different from that in conventional hemoproteins but characteristic of heme-regulated proteins using heme as the signaling molecule. 相似文献
3.
The iron response regulator (Irr) protein from Bradyrhizobium japonicum is a conditionally stable protein that degrades in response to cellular iron availability. This turnover is heme-dependent, and rapid degradation involves heme binding to a heme regulatory motif (HRM) of Irr. Here, we show that Irr confers iron-dependent instability on glutathione S-transferase (GST) when fused to it. Analysis of Irr-GST derivatives with C-terminal truncations of Irr implicated a second region necessary for degradation, other than the HRM, and showed that the HRM was not sufficient to confer instability on GST. The HRM-defective mutant IrrC29A degraded in the presence of iron but much more slowly than the wild-type protein. This slow turnover was heme-dependent, as discerned by the stability of Irr in a heme-defective mutant strain. Whereas the HRM of purified recombinant Irr binds ferric (oxidized) heme, a second site that binds ferrous (reduced) heme was identified based on spectral analysis of truncation and substitution mutants. A mutant in which histidines 117-119 were changed to alanines severely diminished ferrous, but not ferric, heme binding. Introduction of these substitutions in an Irr-GST fusion stabilized the protein in vivo in the presence of iron. We conclude that normal iron-dependent Irr degradation involves two heme binding sites and that both redox states of heme are required for rapid turnover. 相似文献
4.
Human ferrochelatase (E.C. 4.99.1.1) is a homodimeric (86 kDa) mitochondrial membrane-associated enzyme that catalyzes the insertion of ferrous iron into protoporphyrin to form heme. We have determined the 2.0 A structure from the single wavelength iron anomalous scattering signal. The enzyme contains two NO-sensitive and uniquely coordinated [2Fe-2S] clusters. Its membrane association is mediated in part by a 12-residue hydrophobic lip that also forms the entrance to the active site pocket. The positioning of highly conserved residues in the active site in conjunction with previous biochemical studies support a catalytic model that may have significance in explaining the enzymatic defects that lead to the human inherited disease erythropoietic protoporphyria. 相似文献
5.
Interaction of globin and heme during hemoglobin biosynthesis 总被引:1,自引:0,他引:1
6.
Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins 总被引:2,自引:0,他引:2
Taketani S Ishigaki M Mizutani A Uebayashi M Numata M Ohgari Y Kitajima S 《Biochemistry》2007,46(51):15054-15061
The red pigments in meat products, including cooked cured ham, arise from the reaction of myoglobin with nitric oxide generated from exogenous nitrite. Since carcinogenic nitrosoamines may be generated by the treatment of meats with nitrite, the production of nitrite-free meat products is an attractive alternative. Raw dry-cured (Parma) hams are produced by the treatment of meats with salts other than nitrite. Analysis of pigments in raw dry-cured hams reveals that the main pigment is zinc protoporphyrin, suggesting that the conversion of heme to zinc protoporphyrin occurs via an iron-removal reaction from myoglobin heme during the processing of raw hams. Purification of the iron-removal enzyme showed that it was identical to ferrochelatase. Recombinant ferrochelatase in combination with NADH-cytochrome b5 reductase catalyzed NADH-dependent iron-removal reaction from hemin and hemoproteins. Metal ions such as zinc and cobalt were also removed from the corresponding metalloporphyrins. The addition of zinc ions led to the formation of zinc protoporphyrin. In cultured cells, the conversion of zinc mesoporphyrin to mesoheme was observed to be dependent on ferrochelatase and could be markedly induced during erythroid differentiation. This is the first demonstration of a new enzyme reaction, the reverse reaction of ferrochelatase, which may contribute to a new route of the recycling of protoporphyrin and heme in cells. 相似文献
7.
The effects of iron deficiency on heme biosynthesis in Rhizobium japonicum were examined. Iron-deficient cells had a decreased maximum cell yield and a decreased cytochrome content and excreted protoporphyrin into the growth medium. The activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (EC 2.3.1.37) and delta-aminolevulinic acid dehydrase (EC 4.2.1.24), were diminished in iron-deficient cells, but were returned to normal levels upon addition of iron to the cultures. The addition of iron salts, iron chelators, hemin, or protoporphyrin to cell-free extracts did not affect the activity of these enzymes. The addition of levulinic acid to iron-deficient cultures blocked protoporphyrin excretion and also resulted in high delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase activities. These results suggest the possibility that rhizobial heme biosynthesis in the legume root nodule may be affected by the release of iron from the host plant to the bacteroids. 相似文献
8.
Mourey L Da Re S Pédelacq JD Tolstykh T Faurie C Guillet V Stock JB Samama JP 《The Journal of biological chemistry》2001,276(33):31074-31082
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-A resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcB(C) and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems. 相似文献
9.
Angelique C. W. Franken Ernst R. Werner Hubertus Haas B. Christien Lokman Cees A. M. J. J. van den Hondel Arthur F. J. Ram Sandra de Weert Peter J. Punt 《Applied microbiology and biotechnology》2013,97(22):9773-9785
Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway. 相似文献
10.
11.
12.
Karl E. Anderson 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,543(3):313-327
Effects of a series of antihypertensive drugs on the activity of δ-aminolevulinate synthase and on the formation of porphyrins and cytochrome P-450 were examined in the 18-day-old chick embryo liver in ovo. Hydralazine, pargyline, phenoxybenzamine, clonidine, and spironolactone were found to induce δ-aminolevulinate synthase in this system. These drugs therfore have the potential to precipitate clinical expression in human hereditary hepatic porphyrias and should be avoided or used with caution in patients with these disorders. Differential effects of these and other drugs were observed in the avian liver, in that δ-aminolevulinate synthase was more commonly induced thatn were porphyrins and cytochrome -450; the synthase was usually highest 6–12 h after injection, whereas porphyrins and cytochrome P-450 were highest at 24 h. Furthermore marked porphyrin accumulation was not seen with many drugs that induce σ-aminolevulinate synthase and cytochrome P-450 but was more characteristic of compounds that reduced the metabolism of protoporphyrin to heme, such as 1,4-dihydro-3,5-dicarbethoxycollidne (DDC) and high dose of hydralazine. A sensitive and convenient method to test for capacity to induce heme biosynthesis was adapted for use in the chick embryo liver. This employed a relatively small “priming” dose (0.25 mg) of DDC given with a drug being tested and a fluorometric assay of porphyrins in a liver homogenate obtained at 24 h. This simple method should facilitate screening for those drugs which induce the synthesis of δ-aminolevulinate synthase and/or cytochrome P-450 and are potentially dangerous to patients with hereditary hepatic porphyria. 相似文献
13.
In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway 下载免费PDF全文
Olsson U Billberg A Sjövall S Al-Karadaghi S Hansson M 《Journal of bacteriology》2002,184(14):4018-4024
Ferrochelatase (EC 4.99.1.1) catalyzes the last reaction in the heme biosynthetic pathway. The enzyme was studied in the bacterium Bacillus subtilis, for which the ferrochelatase three-dimensional structure is known. Two conserved amino acid residues, S54 and Q63, were changed to alanine by site-directed mutagenesis in order to detect any function they might have. The effects of these changes were studied in vivo and in vitro. S54 and Q63 are both located at helix alpha3. The functional group of S54 points out from the enzyme, while Q63 is located in the interior of the structure. None of these residues interact with any other amino acid residues in the ferrochelatase and their function is not understood from the three-dimensional structure. The exchange S54A, but not Q63A, reduced the growth rate of B. subtilis and resulted in the accumulation of coproporphyrin III in the growth medium. This was in contrast to the in vitro activity measurements with the purified enzymes. The ferrochelatase with the exchange S54A was as active as wild-type ferrochelatase, whereas the exchange Q63A caused a 16-fold reduction in V(max). The function of Q63 remains unclear, but it is suggested that S54 is involved in substrate reception or delivery of the enzymatic product. 相似文献
14.
15.
16.
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation. 相似文献
17.
Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae. 总被引:2,自引:4,他引:2 下载免费PDF全文
Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background. 相似文献
18.
Ferrochelatase (EC 4.99.1.1) catalyzed heme synthesis is best accomplished in an anaerobic environment. Factors responsible for this phenomenon are not fully understood. Oxygen sensitivity of this reaction may be due to (a) oxidation of essential thiol groups on the enzyme, (b) oxidation of ferrous ions, or (c) the formation of hydrogen peroxide. These possibilities were investigated using rat liver ferrochelatase preparations and a continuous, dual-wavelength assay. Dithiothreitol and ascorbic acid stimulated the ferrochelatase reaction whereas GSH was not as effective. Addition of GSSG had little influence on the enzyme reaction. Total ferrochelatase activity in the assay remained unaffected at the end of the incubation and inclusion of glutathione peroxidase did not alter these results. Thus, ferrochelatase itself was not inactivated by oxidation. In selenium-deficient rats, the mitochondrial ferrochelatase levels were maintained even when glutathione peroxidase activity was significantly depleted. However, glutathione peroxidase very effectively inhibited the thiol-dependent aerobic degradation of heme. These results suggested that autoxidation of heme and of ferrous ions to the unusable ferric form largely contribute toward the oxygen sensitivity of the ferrochelatase reaction in vitro. 相似文献
19.
Bovine ferrochelatase. Kinetic analysis of inhibition by N-methylprotoporphyrin, manganese, and heme 总被引:5,自引:0,他引:5
The terminal enzyme of the heme biosynthetic pathway, ferrochelatase (protoheme ferrolyase EC 4.99.1.1), has been purified to apparent homogeneity from bovine liver mitochondria using a scheme similar to that reported by Taketani and Tokunaga (Taketani, S. and Tokunaga, R. (1981) J. Biol. Chem. 256, 12748-12753) for purification of the enzyme from rat liver. The final yield was 49% with a 2000-fold purification. Ferrochelatase has an apparent molecular weight of approximately 40,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and column chromatography on Sepharose CL-6B in the presence of 0.5% sodium cholate. The purified enzyme was only slightly stimulated by added lipid and was inhibited by Mn2+, Pb2+, and Hg2+. Bovine ferrochelatase utilized proto-, meso-, and deuteroporphyrin, but not disubstituted porphyrins (2,4-disulfonic and 2,4-bisglycol deuteroporphyrin). N-Methylprotoporphyrin, a toxic by-product of the metabolism of some drugs, was found to inhibit ferrochelatase in a competitive fashion with respect to porphyrin with a Ki of 7 nM and uncompetitive with respect to iron. Manganese inhibits ferrochelatase competitively with respect to iron (Ki = 15 microM) and noncompetitively with respect to the porphyrin substrate. Heme, one of the products, is a noncompetitive inhibitor with respect to iron. These findings lead to a sequential Bi Bi kinetic model for ferrochelatase with iron binding occurring prior to porphyrin binding and heme being released prior to the release of two protons. 相似文献