首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J W Schmidt  W A Catterall 《Cell》1986,46(3):437-444
The sodium channel from rat brain is a complex of alpha (260 kd), beta 1 (36 kd), and beta 2 (33 kd) subunits. The alpha and beta 2 subunits are linked by disulfide bonds. The earliest biosynthetic precursor of the alpha subunit is a 203 kd core polypeptide with sufficient high-mannose carbohydrate chains to increase its apparent size to 224 kd. It is processed to 224 kd and 249 kd precursor forms containing complex carbohydrate chains before it achieves the mature size of 260 kd. Most newly synthesized alpha subunits are not disulfide-linked to beta 2 subunits, but remain as a metabolically stable pool of intracellular subunits. alpha subunits disulfide-linked to beta 2 are found preferentially at the cell surface. A possible role for this intracellular pool as a rate-limiting step in the regulation of the cell surface density and localization of sodium channels in developing neurons is proposed.  相似文献   

2.
Human C5 is composed of two nonidentical polypeptide chains, alpha and beta (m.w. 130,000 and 80,000, respectively) linked together by disulfide bonds and noncovalent forces. Cleavage of C5 by trypsin fragments with increased anodic mobilities. Limited digestion of C5 by trypsin (substrate to enzyme ratio 10:1 w/w at 37 degrees C for 1 min) resulted in the release of a small terminal alpha-chain peptide (alpha1, m.w. 15,000) probably analogous to C5a, from a large fragment, C5b (m.w. 195,000) composed of an intact beta-chain disulfide linked to an alpha-chain that has a lower m.w. (alpha' 115,000). Further digestion (37 degrees C, 5 min) resulted in cleavage of the alpha-chain at multiple sites with the production of three peptides from the alpha'-chain (alpha2I, 23,500; alpha2II 15,700 and alpha2III 10,200) and a residual fragment, C5c (m.w. 144,000). The alpha1 and alpha2 peptides are not covalently linked to the beta-chain nor to one another. The C5c fragment on the other hand is composed of small peptides of the alpha'c chain (alpha3 14,000; alpha4I 9,000; ALPHA 4II 11,000; alpha 5 23,000 to 30,000) which are linked to the beta-chain and also probably to one another by covalent bonds. Secondary cleavage occurred upon prolonged digestion with trypsin (37 degrees C, 20 min), and this resulted in the progressive erosion of the alpha'c peptides and the conversion of C5c to smaller C5c-like species.  相似文献   

3.
The adult bullfrog Rana catesbeiana has two major hemoglobin components, B and C. Component C polymerizes by disulfide bond formation between tetramers but component B does not. The amino acid sequence of the first 112 residues of the beta chain of component C has been reported (Baldwin, T. O., and Riggs, A. (1974) J. Biol. Chem. 249, 6110-6118). We have completed the sequence of the beta chain of component C by determining the last 28 residues. This segment contains the 2 cysteinyl residues of the chain. Examination of models indicates that neither of these is in a readily accessible position for the formation of intertetramer disulfide bonds. Reactive sulfhydryl groups of the alpha chains are shown to be responsible for the initial formation of disulfide bonds between tetramers. The beta chains within the tetramers form disulfide bonds only when the hemoglobin molecules are subjected to prolonged incubation at 37 degrees C under oxygen. The beta chains of components B and C appear to be identical; the alpha chains are clearly quite different. This suggests that the alpha B and alpha C subunits interact in the association of the deoxygenated tetramers B and C to form what appears to be a BC2 molecule.  相似文献   

4.
The third component of human complement, C3 is composed of two disulfide-bridged polypeptide chains of Mr 120,000 (alpha chain) and Mr 70,000 (beta chain). C3 has a thioester bond that serves as a binding site for targets when C3 is activated. Heat treatment of C3 induces autolytic peptide bond cleavage at the thioester site in the alpha chain as well as rupture of the thioester bond. The alpha chain fragments are linked to each other and beta chain via disulfide bonds. This study, however, documented that prolonged heating gave rise to liberation of several fragments including beta and the larger fragment of alpha chain. Using a fluorescent thiol reagent and [14C]iodoacetamide, we analyzed thiol residues present on each fragment, and elucidated that the thiol residue exposed by rupture of the thioester bond shifts in turn to another fragment resulting in the liberation of the fragments. The results were compatible with those on C4, and suggested that the generated thiol residue induces thiol-disulfide interchange reaction. On heating of plasma, fragments of C3 were not released, while the cleavage of the alpha chain occurred more effectively. The heated C3 (56 degrees C, 15 min) became insusceptible to C3b inactivator (I) and factor H, suggesting that additional conformational change is accompanied with cleavage of the thioester bond.  相似文献   

5.
1. Using a monoclonal anti-human C3 antibody and a polyclonal anti-cobra venom factor antibody as probes, a protein homologous to the mammalian third complement component (C3) was purified from axolotl plasma and found to be axolotl C3. 2. Axolotl C3 consists of two polypeptide chains (Mr = 110,000 and 73,000) linked by disulfide bonds. An internal thiolester bond in the alpha chain was identified by the incorporation of [14C]methylamine and NH2-terminal sequence from the C3d fragment of C3. 3. Digestion of C3 by trypsin resulted in the cleavage of both the alpha and beta chains, generating fragments with a cleavage pattern similar to that of human C3. 4. The amino acid composition of axolotl C3 and the amino acid sequences of the thiolester site (and the surrounding amino acids), the cleavage site for the C3-convertase, and one of the factor I cleavage sites are similar to C3 from other vertebrates. 5. In contrast to human C3, which has concanavalin A binding carbohydrates on both the alpha and beta chains, only the beta chain of axolotl C3 contains such carbohydrates.  相似文献   

6.
The human interleukin-3 receptor (IL-3R) is a heterodimer that comprises an IL-3 specific alpha chain (IL-3R alpha) and a common beta chain (beta C) that is shared with the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5. These receptors belong to the cytokine receptor superfamily, but they are structurally and functionally more related to each other and thus make up a distinct subfamily. Although activation of the normal receptor occurs only in the presence of ligand, the underlying mechanisms are not known. We show here that human IL-3 induces heterodimerization of IL-3R alpha and beta c and that disulfide linkage of these chains is involved in receptor activation but not high-affinity binding. Monoclonal antibodies (MAb) to IL-3R alpha and beta c were developed which immunoprecipitated, in the absence of IL-3, the respective chains from cells labelled with 125I on the cell surface. However, in the presence of IL-3, each MAb immunoprecipitated both IL-3R alpha and beta c. IL-3-induced receptor dimers were disulfide and nondisulfide linked and were dependent on IL-3 interacting with both IL-3R alpha and beta c. In the presence of IL-3 and under nonreducing conditions, MAb to either IL-3R alpha or beta c immunoprecipitated complexes with apparent molecular weights of 215,000 and 245,000 and IL-3R alpha and beta c monomers. Preincubation with iodoacetamide prevented the formation of the two high-molecular-weight complexes without affecting noncovalent dimer formation or high-affinity IL-3 binding. Two-dimensional gel electrophoresis and Western blotting (immunoblotting) demonstrated the presence of both IL-3R alpha and beta c in the disulfide-linked complexes. IL-3 could also be coimmunoprecipitated with anti-IL-3R alpha or anti-beta c MAB, but it was not covalently attached to the receptor. Following IL-3 stimulation, only the disulfide-linked heterodimers exhibited reactivity with antiphosphotyrosine antibodies, with beta c but not IL-3R alpha being the phosphorylated species. A model of IL-3R activation is proposed which may be also applicable to the related GM-CSF and IL-5 receptors.  相似文献   

7.
We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.  相似文献   

8.
We report here on the UV-induced vanadate-dependent cleavage of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both polypeptides are cleaved at a single site (termed the V1 site) by UV irradiation in the presence of Mg2+, ATP, and vanadate. The alpha chain yields fragments of Mr 290,000 and 190,000. Fragments of Mr 255,000 and 185,000 are obtained from the beta chain. Ultraviolet irradiation of the alpha and beta chains in the presence of vanadate and Mn2+ (but no nucleotide) induces cleavage of both molecules at sites (termed the V2 sites) distinct from the V1 sites. The single V2 site within the beta chain is located 75,000 daltons from the site of V1 cleavage within the Mr 255,000 V1 fragment. The alpha chain contains three distinct sites of V2 cleavage; all are located within the Mr 290,000 V1 fragment, 60,000, 90,000, and 100,000 daltons from the site of V1 cleavage. From these studies, we estimate the masses of the alpha and beta heavy chains to be 480,000 and 440,000 daltons, respectively.  相似文献   

9.
Membrane-bound immunoglobulins have, in addition to the transmembrane and cytoplasmic portions, an extracellular membrane-proximal domain (EMPD), absent in the secretory forms. EMPDs of immunoglobulin isotypes alpha, gamma, and epsilon contain cysteines whose role has so far not been elucidated. Using a genetic strategy, we investigated the ability of these cysteines to form disulfide bridges. Shortened versions of human membrane immunoglobulins, depleted of cysteines known to form intermolecular disulfide bonds, were constructed and expressed on the surface of a B-cell line. The resulting membrane proteins contain a single chain fragment of variable regions (scFv) linked to the dimerizing domain from the immunoglobulin heavy chains (CH3 for alpha and gamma or CH4 for epsilon isotypes), followed by the corresponding EMPD and the transmembrane and cytoplasmic domains. The two functional membrane versions of the epsilon chain, containing the short and long EMPD, were analyzed. Our results show that the single cysteine within alpha1L and gamma1 EMPD and the short version of epsilon EMPD form an interchain disulfide bond. Conversely, the cysteine resident in the epsilon transmembrane domain remains unreacted. epsilon-long EMPD contains four cysteines; two are involved in interchain bonds while the remaining two are likely forming an intrachain bridge. Expression of a full-length membrane epsilon heavy chain mutant, in which Cys(121) and Cys(209) within domain CH2 (involved in interchain bridges) were mutated to alanines, confirmed that, within the complete IgE, EMPD cysteines form interchain disulfide bonds. In conclusion, we unveil evidence for additional covalent stabilization of membrane-bound immunoglobulins.  相似文献   

10.
Biosynthesis and processing of murine T-cell antigen receptor   总被引:11,自引:0,他引:11  
B W McIntyre  J P Allison 《Cell》1984,38(3):659-665
The antigen-specific receptor of C6VL T-lymphoma cells is a disulfide-linked heterodimer composed of 39 kd alpha chain and a 41 kd beta chain, both of which exhibit charge microheterogeneity. Pulse-chase labeling experiments indicate that epitopes reactive with the anti-receptor xenoantiserum #8177 were detectable by 2 min, while the clonotypic epitope reactive with monoclonal antibody 124-40 was not detectable until 10 min. Digestion with endoglycosidases H and F revealed that both subunits have at least three N-linked oligosaccharide side chains. The deglycosylated alpha and beta subunits were 27 and 32 kd, respectively. These data suggest that the dimeric receptor is formed shortly after translation, followed by extensive glycosylation. Emergence of the C6VL clonotypic epitope, and perhaps the antigen binding site, may therefore be dependent on post-assembly events.  相似文献   

11.
Laminin alpha chains (alpha1-alpha5 chains) have diverse chain-specific biological functions. The LG4 modules of laminin alpha chains consist of a 14-stranded beta-sheet (A-N) sandwich structure. Several biologically active sequences have been identified in the connecting loop regions. Here, we evaluated the biological activities of the loop regions of the E and F strands in the LG4 modules using five homologous peptides from each of the mouse alpha chains (EF-1: DYATLQLQEGRLHFMFDLG, alpha1 chain 2747-2765; EF-2: DFGTVQLRNGFPFFSYDLG, alpha2 chain 2808-2826; EF-3: RDSFVALYLSEGHVIFALG, alpha3 chain 2266-2284; EF-4: DFMTLFLAHGRLVFMFNVG, alpha4 chain 1511-1529; EF-5: SPSLVLFLNHGHFVAQTEGP, alpha5 chain 3304-3323). These homologous peptides showed chain-specific cell attachment and neurite outgrowth activities. Well organized actin stress fibers and focal contacts with vinculin accumulation were observed in fibroblasts attached on EF-1, whereas fibroblasts on EF-2 and EF-4 showed filopodia with ruffling. Fibroblast attachment to EF-2 and EF-4 was mediated by syndecan-2. In contrast, EF-1 promoted alpha2beta1 integrin-mediated fibroblast attachment and inhibited fibroblast attachment to a recombinant laminin alpha1 chain LG4-5. The receptors for EF-3 and EF-5 are unknown. Further, when the active core sequence of EF-1 was cyclized, utilizing two additional cysteine residues at both the N and C termini through a disulfide bridge, the cyclic peptide significantly enhanced integrin-mediated cell attachment. These results indicate that integrin-mediated cell attachment to the EF-1 sequence is conformation-dependent and that the loop structure is important for the activity. The homologous peptides, which promote either integrin- or syndecan-mediated cell attachment, may be useful for understanding the cell type- and chain-specific biological activities of the laminins.  相似文献   

12.
Chains and fragments of tetanus toxin, and their contribution to toxicity   总被引:4,自引:0,他引:4  
1. Single-chain toxin is enzymatically converted into two-chain isotoxins which differ from the precursor by their higher pharmacological activity, acidity and hydrophilicity. The interchain disulfide bridge and the disulfide loop within fragment C have been located at the amino acid level. 2. Independent of the enzymes used, the nicking sites are positioned within a region spanning no more than 17 amino acids. The N- and C-termini of the primary gene product are preserved in the two-chain toxin. The chains have been separated by isoelectric focussing and can be reconstituted to functionally intact toxin. 3. Light chain inhibits neurotransmitter release on different systems. First, permeabilized bovine adrenal chromaffin cells and rat pheochromocytoma (PC 12) cells release catecholamines when exposed to micromolar [Ca2+]. Inhibition is achieved with light chain or reduced two-chain toxin, but not with single-chain toxin or heavy chain. Washing away the light chain does not restitute the Ca2(+)-evoked release. The light chains of tetanus and botulinum A toxin act in a apparently similar, however not identical manner. Second, light but not heavy chain inhibits the release of acetylcholine when injected into Aplysia neurones. 4. The pharmacology of heavy chain is quite different. Ganglioside binding is mediated by its fragment C moiety, and modulated by the adjoining beta 2 piece and by light chain. Heavy chain and to a lesser degree its N-terminal beta 2-fragment promote the loss of calcein from liposomes indicating pore formation. Its C-terminal fragment C is inactive in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Identification of the components of the murine T cell antigen receptor complex   总被引:69,自引:0,他引:69  
In addition to the alpha and beta chains of the MHC class II restricted antigen receptor, monoclonal anti-receptor antibodies coprecipitate four polypeptides that appear to be noncovalently associated with the alpha-beta dimer of murine T cells. Included in the murine T cell antigen receptor complex are two glycoproteins of 25 kd (gamma) and 21 kd (delta) and two nonglycosylated polypeptides of 26 kd (epsilon) and 16 kd (zeta). The epsilon chain appears to possess an intrachain disulfide bond and zeta exists in the complex as a disulfide-linked homodimer. The delta chain is phosphorylated on a serine residue in response to T cell activation with antigen. In contrast, both delta and epsilon are phosphorylated in response to treatment of the T cells with phorbol 12-myristate 13-acetate. These polypeptides may play a role in the transduction of the signal(s) in T cell activation.  相似文献   

14.
The photoaffinity analogs 2-azidoadenosine 5'-tri(di)-phosphate (2-N3AT(D)P) and 8-azidoadenosine 5'-triphosphate (8-N3ATP) have been used to probe the substructural organization of the nucleotide binding pockets within the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both 2-N3ATP and 8-N3ATP are competitive inhibitors of dynein ATP hydrolysis, and both analogs are themselves hydrolyzed by the alpha-beta dimer. Following vanadate-dependent photolysis at the V1 site (by UV irradiation in the presence of Mg2+, ATP, and vanadate), both probes exclusively labeled the larger fragment from the alpha chain. In contrast, within the beta chain the predominant insertion sites for the two analogs were located on opposite sides of the V1 site. Therefore, the hydrolytic pockets of these two molecules have different substructures. Vanadate-dependent photolysis of the alpha and beta chains at the V2 sites (by UV irradiation in the presence of vanadate and Mn2+) profoundly affected the predominant modification sites; for example, following photolysis at the V2a site neither fragment of the alpha chain was photolabeled by 2-N3ATP or 8-N3ATP. Based on the photolabeling patterns obtained, the single V2 site within the beta chain is predicted to be analogous to the V2b site within the alpha chain. The results support the hypothesis that the V2 sites occur within the ATP binding pockets, and indicate that these functional domains are composed of portions of the heavy chains which are linearly separated by up to at least 100,000 daltons. Thus, the central region of each dynein heavy chain must be extensively folded so as to bring the widely separated photocleavage and photolabeling sites together within a single catalytic unit.  相似文献   

15.
The nucleotide sequence coding for the fourth component of mouse complement (C4) has been determined from a cloned genomic DNA fragment and a cloned cDNA fragment. The amino acid sequence of the protein was deduced. The single chain precursor protein (pro-C4) consists of 1719 amino acid residues. The mature beta, alpha, and gamma subunits contain 654, 766, and 291 amino acids, respectively. One potential carbohydrate attachment site is predicted for the beta chain, three for the alpha chain, and none for the gamma chain. From a comparison with human C4 cDNA sequence an extensive overall sequence homology, 79% in nucleotides and 76% in amino acids, is observed. There is conservation in both the position and number of cysteine residues in human and mouse C4. We compared the mouse C4 amino acid sequences with those of mouse C3 and human alpha 2-macroglobulin and the evolutionary relationship among these three proteins is discussed.  相似文献   

16.
About 30% of human plasma protein C is smaller than the predominant form as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It has been suggested that this species, referred to as beta protein C, is a degraded molecule. However, beta protein C is secreted in culture by the HepG2 cell line and is present in plasma collected directly into numerous proteinase inhibitors; the percentage of beta protein C does not change with time during culture or after blood collection. Neither thrombin, activated protein C, nor activated factor X converts the alpha form to beta in the presence or absence of calcium and phospholipids. The NH2-terminal sequences of the heavy chains of both forms are identical, and both release the same dodecapeptide and develop a functional active site when cleaved by thrombin. Both also react with antibodies to a synthetic COOH-terminal peptide. Timed digests with N-glycosidase are consistent with the interpretation that beta protein C has three N-linked oligosaccharide chains whereas alpha protein C has four. It is asparagine 329 that is not glycosylated in beta protein C since antibodies to a synthetic peptide based on the sequence around this amino acid react only with beta protein C. This site is unique in having cysteine instead of serine or threonine 2 residues distal. It is likely that the sulfhydryl group can substitute for the usual hydroxyl group as a hydrogen bond acceptor for the glycosylation reaction only until it forms a disulfide bond. The percentage of protein C that is glycosylated at this site may therefore depend at least in part on the rate of disulfide bond formation which may in turn be related to the rate of protein synthesis.  相似文献   

17.
The third component of complement (C3) is a 190 kDa glycoprotein essential for eliciting the complement response. The protein consists of two polypeptide chains (alpha and beta) held together with a single disulfide bridge. The beta-chain is composed of six MG domains, one of which is shared with the alpha-chain. The disulfide bridge connecting the chains is positioned in the shared MG domain. The alpha-chain consists of the anaphylatoxin domain, three MG domains, a CUB domain, an alpha(6)/alpha(6)-barrel domain and the C-terminal C345c domain. An internal thioester in the alpha-chain of C3 (present in C4 but not in C5) is cleaved during complement activation. This mediates covalent attachment of the activated C3b to immune complexes and invading microorganisms, thereby opsonizing the target. We present the structure of bovine C3 determined at 3 Angstroms resolution. The structure shows that the ester is buried deeply between the thioester domain and the properdin binding domain, in agreement with the human structure. This domain interface is broken upon activation, allowing nucleophile access. The structure of bovine C3 clearly demonstrates that the main chain around the thioester undergoes a helical transition upon activation. This rearrangement is proposed to be the basis for the high level of reactivity of the thioester group. A strictly conserved glutamate residue is suggested to function catalytically in thioester proteins. Structure-based design of inhibitors of C3 activation may target a conserved pocket between the alpha-chain and the beta-chain of C3, which appears essential for conformational changes in C3.  相似文献   

18.
The present study describes the pathophysiology, at the cellular level, of the mouse beta thalassemia and shows the pertinence of this model for the human disease. The homozygous state of mouse beta thalassemia is characterized by a clinical syndrome similar to the human beta thalassemia intermedia, but it cannot be explained by the small deficiency in beta chain synthesis. The small pool of unpaired and soluble alpha chains present in mouse reticulocytes contrasts with the large amount of insoluble alpha chains in erythrocytes which is induced by the high instability of mouse alpha chains and the absence of significant proteolysis. The amount of insoluble alpha chains associated with red cell ghosts is similar in human and mouse disease of similar severity. The study of membrane protein defects showed a decreased amount of spectrin (alpha and beta chains) and dramatic changes in the distribution of the most reactive thiol groups of membrane proteins. These results were similar to that previously described in the human disease (Rouyer-Fessard, P., Garel, M. C., Domenget, C., Guetarni, D., Bachir, D., Colonna, P., and Beuzard, Y. (1989) J. Biol. Chem. 264, 19092-19098). Abnormal density distribution curves of erythrocytes and oxidant-induced lysis of red blood cells used as functional tests were similar in the human and mouse beta thalessemia. We conclude from the present study that 1) mouse beta thalassemia is an excellent model for the membrane defects occurring in the human disease; 2) disease expression is not the reflection of the globin chain unbalance only nor of the soluble pool of alpha hemoglobin chain but mainly is a reflection of insoluble alpha chains; and 3) the rate of proteolysis and instability of alpha chains are important factors which must be taken into consideration in the pathophysiology and the clinical heterogeneity of the disease.  相似文献   

19.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

20.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号