首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Embryogenic callus developed in 55% of the mature embryo explants of Norway spruce (Picea abies L.) growing on a LP medium minus the amino acids and sugars (except sucrose). This is the highest reported yield of embryogenic callus from mature embryos of P. abies that has ever been reported. Callus induction from either the middle or the end of the hypocotyl of the embryos began after 2–3 weeks. Three types of calli were recovered: (a) globular, (b) light green-compact, (c) white mucilaginous. Only the white mucilaginous calli were embryogenic. The globular and light green-compact calli never become embryogenic, even after several subcultures. The development of somatic embryos was accomplished on half-strength macro-elements of NSIII medium containing 1 M -naphthaleneacetic acid, 1 M abscisic acid, and 3% sucrose. The addition of 10–7 M buthionine sulfoximine to the medium increased the development of somatic embryos by three fold. These results suggest that there is a great potential for increasing the frequency and development of somatic embryos in P. abies. Careful selection of the genotype and modification of the culture medium is required.  相似文献   

2.
Summary Somatic embryogenesis was induced in callus cultures derived from nucellar tissue of cashewnut (Anacardium occidentale L.). Callus was obtained from nucellar tissue after 3 wk of culture on semisolid Murashige and Skoog (MS) basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μM)+gibberellic acid (GA3, 15 μM)+N6-benzyladenine (BA, 5 μM). This callus gave rise to an embryogenic mass after 9 wk on maintenance medium containing 2,4-D (10 μM)+GA3 (15 μM)+4% sucrose +0.5% activated charcoal +10% coconut water (CW) +0.05% casein hydrolysate (CH). The embryogenic mass, after transfer to medium supplemented with 2,4-D (5 μM)+GA3 (30 μM)+4% sucrose +0.5% activated charcoal +10% CW +0.05% CH, gave rise to somatic embryos. The developmental stages of somatic embryos were observed using light and stereo microscopes. Histological study of somatic embryo development was also carried out. The present study would be useful for clonal propagation, and variety improvement in cashewnut, which is essential due to its increasing demand and export potential.  相似文献   

3.
Several coniferous species belonging to the Pinaceae family can be propagated via somatic embryogenesis, while species belonging to the Cupressaceae family cannot. The aim of this study was to identify possibilities and limitations with somatic embryogenesis in Cupressaceae. Juniperus communis was chosen as model species. We show that a high initiation frequency of embryogenic cell lines can be established from intact megagametophytes at the time when intensive cleavage polyembryogeny takes place. The embryogenic cell lines proliferate fast on medium lacking plant growth regulators. Early somatic embryos develop after transfer to medium with decreased content of nitrogen and calcium. The early embryos mature after exposure to abscisic acid. Mature cotyledonary embryos germinate after partial desiccation. A high proportion, over 40%, of the germinating embryos retain the embryogenic potential in the basal part, resulting in development of new embryogenic tissue.  相似文献   

4.
Genotypes representing the three botanical varieties of peanut (Arachis hypogaea L.) were assessed for somatic embryogenesis and subsequent plant conversion from mature zygotic embryo axes. Explants were initially cultured on Murashige and Skoog medium supplemented with 12.42 M 4-amino-3,5,6-trichloropicolinic acid. Individual somatic embryos wer isolated from explant tissue and used to initiate repetitive liquid cultures. There were significant differences among genotypes and varieties for somatic embryo formation and plant regeneration using a single media sequence. Botanical variety fastigiata had a lower embryogenic frequency and produced significantly fewer embryos than either hypogaea or vulgaris, which were similar in response.Abbreviations EA zygotic embryo axes - MS Murashige and Skoog (1962) medium - picloram 4-amino-3,5 - 6 trichloropicolinic acid  相似文献   

5.
Summary Proliferative somatic embryogenesis is a regeneration system suitable for mass propagation and genetic transformation of soybean [Glycine max (L.) Merr.]. The objective of this study was to examine genotypic effects on induction and maintenance of proliferative embryogenic cultures, and on yield, germination, and conversion of mature somatic embryos. Somatic embryos were induced from eight genotypes by explanting 100 immature cotyledons per genotype on induction medium. Differences in frequency of induction were observed among genotypes. However, this step was not limiting for plant regeneration because induction frequency in the least responding genotype was sufficient to initiate and maintain proliferative embryogenic cultures. Six genotypes selected for further study were used to initiate embryogenic cultures in liquid medium. Cultures were evaluated for propagation of globular-stage tissue in liquid medium, yield of cotyledon-stage somatic embryos on differentiation medium, and plant recovery of cotyledon-stage embryos. Genotypes also differed for weight and volume increase of embryogenic tissue in liquid cultures, for yield of cotyledon-stage embryos on differentiation medium, and for plant recovery from cotyledon-stage embryos. Rigorous selection for a proliferative culture phenotype consisting of nodular, compact, green spheres increased embryo yield over that of unselected cultures, but did not affect the relative ranking of genotypes. In summary, the genotypes used in this study differed at each stage of plant regeneration from proliferative embryogenic cultures, but genotypic effects were partially overcome by protocol modifications.  相似文献   

6.
Choi  Y.E.  Ko  S.K.  Lee  K.S.  Yoon  E.S. 《Plant Cell, Tissue and Organ Culture》2002,69(2):201-204
Explants of germinating zygotic embryos of Eleutherococcus sessiliflorus,an important medicinal plant, produced somatic embryos directly on Murashige and Skoog (MS) medium with 4.5 M 2,4-D. In addition, embryogenic callus formed at a low frequency (less than 7%) from hypocotyl segments after prolonged culture. High frequency somatic embryogenesis was obtained through cell suspension culture after the cells were transferred to medium lacking 2,4-D. Maturation and germination of embryos was influenced by the sucrose concentration of the medium. At a low concentration of sucrose (1%), maturation and germination of embryos occurred readily. At over 6% sucrose, somatic embryos did not germinate although this could be overcome by GA3 treatment. Cold treatment during acclimatization after transfer to soil enhanced survival. Surviving plantlets produced new sprouts after overwintering in the field.  相似文献   

7.
The paper describes a method of somatic embryo induction in callus and suspension cultures of Vicia faba L. Callus was induced from immature cotyledons (green maturity stage) of white-flowering horse bean lines cultured on L2 medium (Phillips and Collins 1979) supplemented with 1% sucrose, 0.7% agar and different concentrations of 2,4-dichlorophenoxyacetic acid. The medium with 2.5 M 2,4-Dichlorophenoxyacetic acid was found optimum for embryogenic callus induction. Somatic embryos developed after transfer of the callus to media lower or zero 2,4-Dichlorophenoxyacetic acid and increased level of sucrose (2.5%). The release of somatic embryos from the callus was more apparent after transfer to liquid medium. There were various stages of somatic embryo development, i.e. globular, heart-shaped and torpedo ones.  相似文献   

8.
Callus cultures were initiated from mature excised caryopses of bahiagrass (Paspalum notatum Flugge) on Murashige & Skoog medium supplemented with 20 gl–1 sucrose and 2 mg l–1 2,4-D. Excised mature caryopses readily germinated and callus developed at the base of coleoptiles. There was considerable variation in the amount of non-embryogenic callus among the cultures. Most of the explants produced non-embryogenic translucent callus consisting of thin-walled cells and unorganized tissue. Some of these calli gave rise only to roots. Other explants formed embryogenic calli which were distinguished morphologically as white, globular and friable. Somatic embryos developed and germinated precociously when embryogenic calli were transferred to a 2,4-D-free medium. Somatic embryogenesis was confirmed by histological sections and scanning electron microscopy. Of the 300 cultures, 35 were embryogenic but only 10 produced plants that were successfully grown to maturity.  相似文献   

9.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

10.
Somatic embryogenesis from mature elm (Ulmus minor Mill.) in vitro-cloned material is possible. Embryogenic callus was obtained from leaves inoculated on two different MS-based media—one supplemented with 2.3 M 2,4-dichlorophenoxyacetic acid (I2) and the other supplemented with 1.1 M kinetin (I6). However, only leaves cultured on medium I6 produced somatic embryos, at the globular stage, when embryogenic callus was maintained in induction media. When embryogenic callus from medium I6 was transferred to basal medium, somatic embryos with green cotyledons were obtained. An average of 35.9% of these embryos converted easily into normal plants in conversion medium with 1% sucrose. Acclimatisation reached 39.7%, and this was not significantly different from a control group consisting of plants propagated by axillary buds. No morphological differences were observed between plants derived from somatic embryos and control plants. Also, no differences in ploidy were detected between the somatic embryo-derived plants and the mother plants.Abbreviations BA: Benzyladenine - C1, C2: Conversion media - 2,4-D: 2,4-Dichlorophenoxyacetic acid - Kn: Kinetin - NAA: -Naphthaleneacetic acid - PI: Propidium iodide - I2, I6: Induction media Communicated by D. Bartels  相似文献   

11.
A reproducible system for somatic embryogenesis and plantlet formation of sandalwood has been developed. A high frequency (100%) of somatic embryos were induced directly from various explants in MS (Murashige and Skoog, 1962) medium with thidiazuron (1 or 2 M) or indirectly in medium containing 2,4-D plus thidiazuron. Within 8 weeks, white globular somatic embryos or friable embryogenic tissue developed on cultured explants. In S. album the globular somatic embryos were transferred to MS medium supplemented with IAA (6 M) and kinetin (1 and M) where they developed further, multiplied and maintained friable embryogenic tissue. After 15-30 d, mature somatic embryos (1-2 mm) with well-developed cotyledons were separated and subcultured on to medium containing GA3 (6 M) for germination. Once germinated, elongated somatic embryos (10-20 mm long) grew further in MS supplemented with lower GA3 (3 M). In S. spicatum, the addition of casein hydrolysate and coconut milk was necessary for plantlet development from somatic embryos. From histological studies, it appeared that primary somatic embryos arose from single cells or had a multicellular origin from the epidermis or cortical parenchyma. Secondary somatic embryos and friable embryogenic tissue differentiated from groups of proembryogenic cells from a superficial layer of the primary somatic embryos.Keywords: Santalum album, Santalum spicatum, somatic embryogenesis, histological studies.   相似文献   

12.
Somatic embryos and rooted plantlets have been regenerated from light-initiated embryogenic callus derived from mature embryos of Picea abies. Under a 16 h photoperiod, mature zygotic embryos were cultured on a modified half-strength Murashige & Skoog medium without NH4NO3 and supplemented with 5 mM glutamine, 4.5 M N6-benzyladenine and 10.7 M naphthaleneacetic acid or 10 M 2,4-dichlorophenoxyacetic acid. White translucent embryogenic callus, proliferating from the callusing hypocotyl region after 3 weeks incubation, was isolated from the green non-embryogenic tissue and subcultured for over 12 months. Upon transfer of the embryogenic callus through a specific sequence of media, somatic embryos proceeded to mature, elongating and forming rings of cotyledonary leaves similar to those of zygotic embryos. Transferred to medium without growth regulators, the somatic embryos germinated and produced plantlets with green cotyledons, elongated hypocotyls and primary roots.  相似文献   

13.
Several factors affecting somatic embryogenesis (SE) in Pinus sylvestris from self- and cross-pollinated seed families were studied with the aim of producing large quantities of clonal plants. Somatic embryogenesis initiation from zygotic embryos was improved on a medium with lower than standard concentrations of 2,4-dichlorophenoxyacetic acid (2.2 vs. 9.5 μM) and 6-benzyladenine (2.2 vs. 4.5 μM). On this medium, initiation rates of four controlled crosses, including one self-cross, varied from 3% to 25%. Among the maturation factors tested, the concentration of abscisic acid (ABA 80, 120 μM) had no significant effect on the production of mature somatic embryos when the medium contained 0.1 M sucrose. When sucrose concentration was 0.2 M, however, 1.4 times more mature somatic embryos were produced on medium with 80 μM compared with 120 μM ABA. Under our best maturation conditions, mature somatic embryos accumulated amounts of storage proteins that were similar to the amounts in mature zygotic embryos. Activated charcoal exerted a beneficial effect on mature somatic embryo production of 24-week-old cultures; there was no evidence of such an effect in 8-week-old cultures. Thirty-seven embryogenic lines from a self-cross and an out-cross were chosen for clonal plant production. Highly embryogenic lines produced mature somatic embryos that were more likely to convert to plants than those from less embryogenic lines. After 4 months of growth in a shade house, plantlet survival rates exceeded 70% for 31 lines out of 35. This report describes an improved method for accelerated production of large quantities of Scots pine for clonal tests.  相似文献   

14.
Summary The present investigation reports optimized parameters for somatic embryogenesis and cryopreservation of embryogenic cultures using shoot apical domes from mature trees of Pinus roxburghii Sarg. Embryogenic tissue of P. roxburghii Sarg. was cryopreserved for 24 h, 10 d, and 8 wk using sorbitol and dimethylsulfoxide (DMSO) as cryoprotectants. Results indicate that 0.2M sorbitol and 5% DMSO had the best cryoprotecting effect. The recovered tissue showed luxuriant growth on maintenance medium (II). Partial desiccation of thawed embryogenic tissue for 24 h prior to transfer to maturation medium enhanced the maturation of somatic embryos. Maturation frequency increased from 1.3 to 18.3% after 12 h desiccation treatment, and from 18.3 to 61.8% after 24 h of desiccation. However, non-desiccated embryogenic tissue produced the least number of somatic embryos (1.3%) on the maturation medium with the same abscisic acid and Gellan gum concentration. All the three embryogenic lines produced plantlets and had the same appearance and normal growth as compared to unfrozen controls.  相似文献   

15.
Current research on somatic embryogenesis of bamboo uses reproductive tissue as explants. However, it was hard to obtain the explant. Shoots of a local accession (3–4 m high) were used for multiple shoot production. In order to obtain embryogenic callus, nodal and internodal tissues from in vitro plantlets were placed on Murashige and Skoog (MS) medium supplemented with 9.2 M kinetin (KN), 13.6 M 2,4-dichlorophenoxyacetic acid (2,4-D), 0.1% (v/v) coconut milk, and 6% (w/v) sucrose. We studied the effects of sucrose and thidiazuron (TDZ) on callus proliferation. Optimal additives to the MS medium for embryogenic callus proliferation were 0.046 M TDZ, 13.6 M 2,4-D and 3% (w/v) sucrose. TDZ also promoted the germination of bamboo somatic embryos. The germination rate of the somatic embryos exceeded 80% on MS-based medium supplemented with 0.455M TDZ. Naphthaleneacetic acid (NAA) reduced germination. Well-developed plantlets were successfully transferred to soil. There was no albino mutant in subsequent culture. In vitro regenerants and potted plants flowered, but no seeds were produced.  相似文献   

16.
Callus cultures from 300 genotypes of alfalfa (Medicago sativa L.) were initiated from leaf, petiole, and internode explants placed on Blaydes medium containing 10.74 M -naphthaleneacetic acid, 11.42 M indole-3-acetic acid, and 9.29 M kinetin. Five genotypes produced somatic embryos. Upon transfer of these embryos to growth regulator-free Murashige and Skoog medium with B5 vitamins, new somatic embryos repeatedly formed directly on older somatic embryos without an intervening callus phase in a cycle lasting about 30 days. These cultures have been maintained for two years, during which time their embryogenic capacity has remained stable. New embryogenic cultures could be started repeatedly from these genotypes. The elimination of sugars from the medium could stop recurrent embryogenesis. Glucose, maltose, and fructose stimulated recurrent embryogenesis more effectively than sucrose. Sucrose was superior to lactose, while sorbitol and mannitol did not stimulate recurrent somatic embryogenesis. The absence of nicotinic acid in the medium, as long as sucrose was present, was lethal to embryos of three of the five tested genotypes. The ability of this system to propagate embryos exponentially offers potential for development of new gene transfer systems and application to artificial seed technology.Abbreviations NAA -naphthaleneacetic acid - RSE recurrent somatic embryogenesis  相似文献   

17.
Genotypic differences in the ability of immature leaf lobes and apical shoot meristems of cassava to form primary somatic embryos in P-CIM were observed (p 0.05). The mean number of apical meristems forming primary organized embryogenic structures when cultured in embryo induction medium supplemented with picloram (P-CIM) had greatest variability between genotypes (C.V.=22.70%). Maturation frequencies of primary embryos were genotype-dependent and ranged from 17 to 100%. Secondary embryo formation was also genotype-dependent and their maturation frequencies varied from 48 to 100%. Cyclic somatic embryogenesis was successfully established and maintained in 11 genotypes in P-CIM. All genotypes underwent organogenesis with significant genotypic variation (p 0.05), and organogenic potential ranging from 5.4 to 76.8%. The number of somatic cotyledons forming multiple shoot buds or more than 10 shoot buds per cluster had the greatest variability between genotypes (C.V.=36.96%) as compared with the overall embryogenic potential. Shoot regeneration ability was neither related to primary embryogenic potential nor to explant type for primary embryo induction. Plantlet regeneration per responding explant ranged from 0.1 to 12. Regenerants established in the field at the frequency ranging from 60 to 100%. DNA content of regenerants was homogeneous and similar to that of mother plants and ploidy level was unchanged (2n = 36). The potential benefits of a systematic tissue culture approach for screening agronomically superior genotypes for regeneration capability and its usefulness in selecting those suited for transgenic programs are discussed.  相似文献   

18.
Immature and mature zygotic embryos of hexaploid, Triticale var. DT-46 formed an embryogenic callus, with subsequent somatic embryo formation upon subculture to MS (Murashige and Skoog, 1962) or N6 (Chu et al., 1975) nutrient medium supplemented with various concentrations (9.0–22.5 M) of 2,4-dichlorophenoxyacetic acid (2,4-D). Of the two types of explants, embryogenic tissue from immature embryos responded at a higher frequency, to form somatic embryos over the callus surface. Leaf-base segment cultured on to 2,4-D-containing medium formed a tissue which did not form somatic embryos and instead differentiated into shoot-buds. N6 medium proved to be more effective than MS in support of somatic embryogenesis or shoot-bud formation. Regeneration of plantlets occurred on 2,4-D-free basal medium. These in vitro-formed plantlets were successfully transferred to soil and set seed.  相似文献   

19.
Immature zygotic embryos of rose (Rosa hybrida L.; cv. Sumpath) did not form somatic embryos or embryogenic calluses when cultured on half-strength Murashige and Skoog's medium supplemented with various con-centrations of 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole growth regulator. However, the zygotic embryos produced somatic embryos without an intervening callus phase at a frequency of 27.3% on medium with 4.44 M 6-benzyladenine (BA) alone. Immature zygotic embryos formed embryogenic calluses at a frequency of 25% on medium with a combination of 1.36 M 2,4-D and 4.44 M BA. Upon transfer to medium without growth regulators, embryogenic calluses produced numerous somatic embryos that subsequently developed into plantlets. Somatic embryos were induced directly from immature zygotic embryos, or indirectly via an intervening callus phase, by manipulating the exogenous growth regulators. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号