首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Escherichia coli DNA adenine methyltransferase (Dam) plays essential roles in DNA replication, mismatch repair and gene regulation. The differential methylation by Dam of the two GATC sequences in the pap promoter regulates the expression of pili genes necessary for uropathogenic E.coli cellular adhesion. Dam processively methylates GATC sites in various DNA substrates, yet the two pap GATC sites are not processively methylated. We previously proposed that the flanking sequences surrounding the two pap GATC sites contribute to the enzyme's distributive methylation. We show here that replacement of the poorly methylated pap GATC sites with sites predicted to be processively methylated indeed results in an increase in Dam processivity. The increased processivity is due to a change in the methyltransfer kinetics and not the binding efficiency of Dam. A competition experiment in which the flanking sequences of only one pap GATC site were altered demonstrates that the GATC flanking sequences directly regulate the enzyme's catalytic efficiency. The GATC flanking sequences in Dam-regulated promoters in E.coli and other bacteria are similar to those in the pap promoter. Gene regulation from some of these promoters involves mechanisms and proteins that are quite different from those in the pap operon. Further, GATC sequences previously identified to remain unmethylated within the E.coli genome, but whose function remains largely unassigned, are flanked by sequences predicted to be poorly methylated. We conclude that the GATC flanking sequences may be critical for expression of pap and other Dam-regulated genes by affecting the activity of Dam at such sites and, thus, its processivity. A model is proposed, illustrating how the sequences flanking the GATC sites in Dam-regulated promoters may contribute to this epigenetic mechanism of gene expression, and how flanking sequences contribute to the diverse biological roles of Dam.  相似文献   

4.
5.
Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.  相似文献   

6.
7.
8.
9.
P Meyer  I Niedenhof    M ten Lohuis 《The EMBO journal》1994,13(9):2084-2088
A considerable proportion of cytosine residues in plants are methylated at carbon 5. According to a well-accepted rule, cytosine methylation is confined to symmetrical sequences such as CpG and CpNpG, which provide the signal for faithful transmission of symmetrical methylation patterns by maintenance methylase. Using a genomic sequencing technique, we have analysed cytosine methylation patterns within a hypermethylated and a hypomethylated state of a transgene in Petunia hybrida. Examination of a part of the transgene promoter revealed that in both states m5C residues located within non-symmetrical sequences could be detected. Non-symmetrical C residues in the two states were methylated at frequencies of 5.9 and 31.9%, respectively. Methylation appeared to be distributed heterogeneously, but some DNA regions were more intensively methylated than others. Our results show that at least in a transgene, a heterogeneous methylation pattern, which does not depend on symmetry of target sequences, can be established and conserved.  相似文献   

10.
The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.  相似文献   

11.
A C Codn  Y S Lee    V E Russo 《Nucleic acids research》1997,25(12):2409-2416
It has previously been reported that multiple copies of the hph gene integrated into the genome of Neurospora crassa are methylated at Hpa II sites (CCGG) during the vegetative life cycle of the fungus, while hph genes integrated as single copies are not methylated. Furthermore, methylation is correlated with silencing of the gene. We report here the methylation state of cytosine residues of the major part of the promoter region of the hph gene integrated into the genome of the multiple copy strain HTA5.7 during the vegetative stage of the life cycle. Cytosine methylation is sequence dependent, but the sequence specificity is complex and is different from the sequence specificity known for mammals and plants (CpG and CpNpG). The pattern of DNA methylation reported here is very different from that measured after meiosis in Neurospora or in Ascobulus . After the sexual cycle in those two fungi all the cytosines of multiple stretches of DNA are heavily methylated. This indicates that the still unknown methyltransferase in Neurospora has a different specificity in the sexual and the vegetative stages of the life cycle or that there are different methyltransferases. The pattern of methylation reported here is also different from the pattern of cytosine methylation of transgenes of Petunia , the only pattern published until now in plants that has DNA methylation at cytosines which are not in the canonical sequences CpG and CpNpG.  相似文献   

12.
Arthrobacter viscosus DNA was resistance to digestion by restriction enzymes that are sensitive to methylation of the cytosine residue (but not of adenine) within the GATC recognition sequence. Restriction enzymes sensitive to methylation of cytosine in other recognition sequences were not affected. A. viscosus DNA thus appeared to contain methylated cytosine specifically at the GATC sequence.  相似文献   

13.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

14.
15.
DNA methylation plays an important role in gene expression regulation during biological development in plants. This study adopted methylation sensitive amplification polymorphism (MSAP) to compare the levels and patterns of cytosine methylation at CCGG sites in maize genome. The tissues assayed included seedlings and tassels of C-type cytoplasmic male sterility (C Huang Zao Si, C 48-2) and its maintainer lines. For each tissue, both C Huang Zao Si and C 48-2 were more methylated than their corresponding maintainers not only on MSAP ratios, but also on the full methylation levels. In different nuclear backgrounds, the two tissues were more methylated in Huang Zao Si than in 48-2, although the two lines shared the same cytoplasm. Full methylation of internal cytosine was the dominant type in the maize genome. In addition, four different classes of methylation patterns were identified in tassels between C-CMS lines and their maintainer lines; these were specific-methylation, demethylation, hypo-methylation, and hyper-methylation. The results obtained demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and suggested the possible association between DNA methylation polymorphism and C-type cytoplasmic male sterility.  相似文献   

16.
17.
Cytosine DNA methylation is a stable epigenetic mark for maintenance of gene silencing across cellular divisions, but it is a reversible modification. Genetic and biochemical studies have revealed that the Arabidopsis DNA glycosylase domain-containing proteins ROS1 (REPRESSOR OF SILENCING 1) and DME (DEMETER) initiate erasure of 5-methylcytosine through a base excision repair process. The Arabidopsis genome encodes two paralogs of ROS1 and DME, referred to as DEMETER-LIKE proteins DML2 and DML3. We have found that DML2 and DML3 are 5-methylcytosine DNA glycosylases that are expressed in a wide range of plant organs. We analyzed the distribution of methylation marks at two methylated loci in wild-type and dml mutant plants. Mutations in DML2 and/or DML3 lead to hypermethylation of cytosine residues that are unmethylated or weakly methylated in wild-type plants. In contrast, sites that are heavily methylated in wild-type plants are hypomethylated in mutants. These results suggest that DML2 and DML3 are required not only for removing DNA methylation marks from improperly-methylated cytosines, but also for maintenance of high methylation levels in properly targeted sites.  相似文献   

18.
Plasmodium falciparum: evidence for a DNA methylation pattern   总被引:3,自引:0,他引:3  
The methylation status of the adenine and cytosine residues in the genome of Plasmodium falciparum was studied using restriction enzymes exhibiting differential activity dependent on the methylation state of these residues in their recognition site. The gene coding for the enzyme dihydrofolate reductase-thymidylate synthase was studied for that purpose. No methylated adenine residues were observed in this gene in four strains tested. However, partial methylation of cytosine residues was observed in all strains. This methylation occurred at a specific site of the gene and was of the eukaryotic type, namely at a CpG sequence.  相似文献   

19.
Summary A large number of wheat rRNA genes are methylated at all the CCGG sites that are present in the intergenic regions. A smaller number of rRNA genes are not methylated at one or more CCGG sites. A subset of genes was found unmethylated at a specific CCGG site just downstream of the array of 135 by A repeats in the intergenic region. In all the genotypes studied, the rDNA loci with larger intergenic regions between their genes also possess a greater number of rRNA genes that are unmethylated at one or more CCGG sites in the intergenic regions than do the loci with shorter intergenic regions. In four genotypes (for which data were available), rDNA loci with longer intergenic regions had larger secondary constrictions on metaphase chromosomes, a measure of relative locus activity, than the loci with shorter intergenic regions. The results have been integrated into a model for the control of rDNA expression based on correlations between cytosine methylation patterns and the number of upstream 135 by repeats in intergenic regions. According to this model the 135 by repeats play a part in the control of gene activity by binding a protein(s) that is in limiting supply, thereby predisposing the neighbouring gene to become active preferentially.  相似文献   

20.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号