首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Folding and stability of trp aporepressor from Escherichia coli   总被引:12,自引:0,他引:12  
Equilibrium and kinetic studies of the urea-induced unfolding of trp aporepressor from Escherichia coli were performed to probe the folding mechanism of this intertwined, dimeric protein. The equilibrium unfolding transitions at pH 7.6 and 25 degrees C monitored by difference absorbance, fluorescence, and circular dichroism spectroscopy are coincident within experimental error. All three transitions are well described by a two-state model involving the native dimer and the unfolded monomer; the free energy of folding in the absence of denaturant and under standard-state conditions is estimated to be 23.3 +/- 0.9 kcal/mol of dimer. The midpoint of the equilibrium unfolding transition increases with increasing protein concentration in the manner expected from the law of mass action for the two-state model. We find no evidence for stable folding intermediates. Kinetic studies reveal that unfolding is governed by a single first-order reaction whose relaxation time decreases exponentially with increasing urea concentration and also decreases with increasing protein concentration in the transition zone. Refolding involves at least three phases that depend on both the protein concentration and the final urea concentration in a complex manner. The relaxation time of the slowest of these refolding phases is identical with that for the single phase in unfolding in the transition zone, consistent with the results expected for a reaction that is kinetically reversible. The two faster refolding phases are presumed to arise from slow isomerization reactions in the unfolded form and reflect parallel folding channels.  相似文献   

2.
We have examined the folding and unfolding of the caspase recruitment domain of procaspase-1 (CP1-CARD), a member of the alpha-helical Greek key protein family. The equilibrium folding/unfolding of CP1-CARD is described by a two-state mechanism, and the results show CP1-CARD is marginally stable with a DeltaG(H2O) of 1.1 +/- 0.2 kcal/mole and an m-value of 0.65 +/- 0.06 kcal/mole/M (10 mM Tris-HCl at pH 8.0, 1 mM DTT, 25 degrees C). Consistent with the equilibrium folding data, CP1-CARD is a monomer in solution when examined by size exclusion chromatography. Single-mixing stopped-flow refolding and unfolding studies show that CP1-CARD folds and unfolds rapidly, with no detectable slow phases, and the reactions appear to reach equilibrium within 10 msec. However, double jump kinetic experiments demonstrate the presence of an unfolded-like intermediate during unfolding. The intermediate converts to the fully unfolded conformation with a half-time of 10 sec. Interrupted refolding studies demonstrate the presence of one or more nativelike intermediates during refolding, which convert to the native conformation with a half-time of about 60 sec. Overall, the data show that both unfolding and refolding processes are slow, and the pathways contain kinetically trapped species.  相似文献   

3.
The kinetics of the reversible folding and unfolding of Escherichia coli dihydrofolate reductase have been studied by stopped-flow circular dichroism in the peptide region at pH 7.8 and 15 degrees C. The reactions were induced by concentration jumps of a denaturant, urea. The method can detect various intermediates transiently populated in the reactions although the equilibrium unfolding of the protein is apparently approximated by a two-state reaction. The results can be summarized as follows. (1) From transient circular dichroism spectra measured as soon as the refolding is started, a substantial amount of secondary structure is formed in the burst phase, i.e., within the dead time of stopped-flow mixing (18 ms). (2) The kinetics from this burst-phase intermediate to the native state are multiphasic, consisting of five phases designated as tau 1, tau 2, tau 3, tau 4, and tau 5 in increasing order of the reaction rate. Measurements of the kinetics at various wavelengths have provided kinetic difference circular dichroism spectra for the individual phases. (3) The tau 5 phase shows a kinetic difference spectrum consistent with an exciton contribution of two aromatic residues in the peptide CD region. The absence of the tau 5 phase in a mutant protein, in which Trp 74 is replaced by leucine, suggests that Trp 74 is involved in the exciton pair and that the tau 5 phase reflects the formation of a hydrophobic cluster around Trp 74. From the similarity of the kinetic difference spectrum to the difference between the native spectra of the mutant and wild-type proteins, it appears that Trp 47 is the partner in the exciton pair and that the structure formed in the tau 5 phase persists during the later stages of folding. (4) The later stages of folding show kinetic difference spectra that can be interpreted by rearrangement of secondary structure, particularly the central beta sheet of the protein. The pairwise similarities in the spectrum between the tau 3 and tau 4 phases, and between the tau 1 and tau 2 phases, also suggest the presence of two parallel folding channels for refolding. (5) The unfolding kinetics show three to four phases and are interpreted in terms of the presence of multiple native species. The total ellipticity change in kinetic unfolding reaction, however, agrees with the ellipticity difference between the native and unfolding states, indicating the absence of the burst phase in unfolding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The stability of ribonuclease T2 (RNase T2) from Aspergillus oryzae against guanidine hydrochloride and heat was studied by using CD and fluorescence. RNase T2 unfolded and refolded reversibly concomitant with activity, but the unfolding and refolding rates were very slow (order of hours). The free energy change for unfolding of RNase T2 in water was estimated to be 5.3 kcal.mol-1 at 25 degrees C by linear extrapolation method. From the thermal unfolding experiment in 20 mM sodium phosphate buffer at pH 7.5, the Tm and the enthalpy change of RNase T2 were found to be 55.3 degrees C and 119.1 kcal.mol-1, respectively. From these equilibrium and kinetic studies, it was found that the stability of RNAse T2 in the native state is predominantly due to the slow rate of unfolding.  相似文献   

5.
Wang D  Zhang J  Jin X  Wu J  Shi Y 《Biochemistry》2007,46(5):1293-1302
HMG box 5 of human upstream binding factor (hUBF) consists of three alpha-helices arranged in an L-shape with a hydrophobic core embraced by these helices and stabilized by extensive hydrophobic interactions between nonpolar residues around the core. The GdmCl-induced equilibrium unfolding transition of HMG box 5 of hUBF was monitored by both circular dichroism (CD) and fluorescence spectra. A cooperative two-state unfolding process was observed. The unfolding free energy, DeltaGU(D2O), and the cooperativity of the unfolding reaction, m, are 4.6 +/- 0.16 kcal x mol-1 and 1.62 +/- 0.06 kcal x mol-1 x M-1, respectively. Native-state hydrogen exchange (NHX) experiments under EX2 conditions were performed. NHX results clearly show that the hydrophobic core among the three helices is a slow-exchange core. The three helices would not contribute equally to the stability of the native protein. Helix 3 appears to contribute the least to the stability. The NHX data have also allowed the local, subglobal, and global unfolding structures of hUBF HMG box 5 to be dissected, and common global and subglobal unfolding units were successfully detected.  相似文献   

6.
L J Reece  R Nichols  R C Ogden  E E Howell 《Biochemistry》1991,30(45):10895-10904
R67 dihydrofolate reductase (DHFR) is a novel protein that provides clinical resistance to the antibacterial drug trimethoprim. The crystal structure of a dimeric form of R67 DHFR indicates the first 16 amino acids are disordered [Matthews et al. (1986) Biochemistry 25, 4194-4204]. To investigate whether these amino acids are necessary for protein function, the first 16 N-terminal residues have been cleaved off by chymotrypsin. The truncated protein is fully active with kcat = 1.3 s-1, Km(NADPH) = 3.0 microM, and Km(dihydrofolate) = 5.8 microM. This result suggests the functional core of the protein resides in the beta-barrel structure defined by residues 27-78. To study this protein further, synthetic genes coding for full-length and truncated R67 DHFRs were constructed. Surprisingly, the gene coding for truncated R67 DHFR does not produce protein in vivo or confer trimethoprim resistance upon Escherichia coli. Therefore, the relative stabilities of native and truncated R67 DHFR were investigated by equilibrium unfolding studies. Unfolding of dimeric native R67 DHFR is protein concentration dependent and can be described by a two-state model involving native dimer and unfolded monomer. Using absorbance, fluorescence, and circular dichroism techniques, an average delta GH2O of 13.9 kcal mol-1 is found for native R67 DHFR. In contrast, an average delta GH2O of 11.3 kcal mol-1 is observed for truncated R67 DHFR. These results indicate native R67 DHFR is 2.6 kcal mol-1 more stable than truncated protein. This stability difference may be part of the reason why protein from the truncated gene is not found in vivo in E. coli.  相似文献   

7.
An analysis of the unfolding and refolding curves at equilibrium of dimeric bovine odorant binding protein (bOBP) has been performed. Unfolding induced by guanidinium chloride (GdnHCl) is completely reversible as far as structure and ligand binding capacity are concerned. The transition curves, as obtained by fluorescence and ellipticity measurements, are very similar and have the same protein concentration-independent midpoint (C1/2 approximately 2.6 M). This result implies a sequential, rather than a concerted, unfolding mechanism, with the involvement of an intermediate. However, since it has not been detected, this intermediate must be present in small amounts or have the same optical properties of either native or denatured protein. The thermodynamic best fit parameters, obtained according to a simple two-state model, are: deltaG degrees un,w = 5.0 +/- 0.6 kcal mol(-1), m = 1.9 +/- 0.2 kcal mol(-1) M(-1) and C1/2 = 2.6 +/- 0.1 M. The presence of the ligand dihydromyrcenol has a stabilising effect against unfolding by GdnHCl, with an extrapolated deltaG degrees un,w of 22.2 +/- 0.9 kcal mol(-1), a cooperative index of 3.2 +/- 0.3 and a midpoint of 4.6 +/- 0.4 M. The refolding curves, recorded after 24 h from dilution of denaturant are not yet at equilibrium: they show an apparently lower midpoint (C1/2 = 2.2 M), but tend to overlap the unfolding curve after several days. In contrast to chromatographic unfolding data, which fail to reveal the presence of folded intermediates, chromatographic refolding data as a function of time clearly show a rapid formation of folded monomers, followed by a slower step leading to folded dimers. Therefore, according to this result, we believe that the preferential unfolding/refolding mechanism is one in which dimer dissociation occurs before unfolding rather than the reverse.  相似文献   

8.
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed.  相似文献   

9.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

10.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

11.
Unfolding and refolding studies on porcine odorant binding protein (pOBP) have been performed at pH 7 in the presence of guanidinium hydrochloride (GdnHCl). Unfolding, monitored by following changes of protein fluorescence and circular dichroism (CD), was found to be a reversible process, in terms of recovered structure and function. The equilibrium transition data were fitted by a simple two-state sigmoidal function of denaturant concentration and the thermodynamic folding parameters, derived from the two techniques, were very similar (average values: C(1/2) approximately 2.4 M, m approximately 2 kcal mol(-1) M(-1), DeltaG(unf,w)(0) approximately 4.7 kcal mol(-1)). The transition was independent of protein concentration, indicating that only monomeric species are involved. Only a minor protective effect by the fluorescent ligand 1-amino-anthracene (AMA) against protein unfolding was detected, whereas dihydromyrcenol (DHM) stabilised the protein to a larger extent (DeltaC(1/2) approximately 0.5 M). Refolding was complete, when the protein, denatured with GdnHCl, was diluted with buffer. On the other hand, refolding by dialysis was largely prevented by concomitant aggregation. The present results on pOBP are compared with those on bovine OBP (bOBP) [Biochim. Biophys. Acta 1599 (2002) 90], where subunit folding is accompanied by domain swapping. We finally suggest that the generally observed two-state folding of many lipocalins is probably favoured by their beta-barrel topology.  相似文献   

12.
Slow refolding kinetics in yeast iso-2 cytochrome c   总被引:1,自引:0,他引:1  
J J Osterhout  B T Nall 《Biochemistry》1985,24(27):7999-8005
  相似文献   

13.
The unfolding equilibrium of beta-trypsin induced by thermal and chemical denaturation was thermodynamically characterized. Thermal unfolding equilibria were monitored using UV absorption and both far- and near-UV CD spectroscopy, while fluorescence was used to monitor urea-induced transitions. Thermal and urea transition curves are reversible and cooperative and both sets of data can be reasonably fitted using a two-state model for the unfolding of this protein. Plots of the fraction denatured, calculated from thermal denaturation curves at different wavelengths, versus temperature are coincident. In addition, the ratio of the enthalpy of denaturation obtained by scanning calorimetry to the van't Hoff enthalpy is close to unity, which supports the two-state model. Considering the differences in experimental approaches, the value for the stability of beta-trypsin estimated from spectroscopic data (deltaGu = 6.0 +/- 0.2 kcal/mol) is in reasonable agreement with the value calculated from urea titration curves (deltaGUH2O = 5.5 +/- 0.3 kcal/mol) at pH 2.8 and 300 degrees K.  相似文献   

14.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

15.
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.  相似文献   

16.
鸡肝二氢叶酸还原酶(DHFR)平衡态的去折叠曲线符合二态模型,但在4.0mol/L脲中的去折叠动力学为两相。该酶的ArrehiusPlot有一个拐点,但在低浓度变性剂存在下,拐点消失。用二氢叶酸还原酶的天然状态存在两种构象可以很好地解释上述现象。二氢叶酸还原酶去折叠过程中没有稳定存在的中间体,动力学过程中的两相可能是两种天然构象态的去折叠速度常数不同造成的。ArrehiusPlot的拐点是由于在不同的温度条件下,两种天然构象的含量不同造成的,低浓度变性剂对两种构象的影响不同,使拐点消失。KCl可以改变两种构象的平衡  相似文献   

17.
To test the possibility that long-range interactions might influence the folding and stability of dihydrofolate reductase, a series of single and double mutations at positions 28 and 139 were constructed and their urea-induced unfolding reactions studied by absorbance and circular dichroism spectroscopy. The alpha carbons of the two side chains are separated by 15 A in the native conformation. The replacement of Leu 28 by Arg and of Glu 139 by Gln resulted in additive effects on both kinetic and equilibrium properties of the reversible unfolding transition; no evidence for interaction was obtained. In contrast, the Arg 28/Lys 139 double replacement changed the equilibrium folding model from two state to multistate and showed evidence for interaction in one of the two kinetic phases detected in both unfolding and refolding reactions. The results can be explained in terms of a long-range, repulsive electrostatic interaction between the cationic side chains at these two positions.  相似文献   

18.
Kim DH  Jang DS  Nam GH  Yun S  Cho JH  Choi G  Lee HC  Choi KY 《Biochemistry》2000,39(42):13084-13092
Equilibrium and kinetic analyses have been carried out to elucidate the folding mechanism of homodimeric ketosteroid isomerase (KSI) from Comamonas testosteroni. The folding of KSI was reversible since the activity as well as the fluorescence and CD spectra was almost completely recovered after refolding. The equilibrium unfolding transitions monitored by fluorescence and CD measurements were almost coincident with each other, and the transition midpoint increased with increasing protein concentration. This suggests that the KSI folding follows a simple two-state mechanism consisting of native dimer and unfolded monomer without any thermodynamically stable intermediates. Sedimentation equilibrium analysis and size-exclusion chromatography of KSI at different urea concentrations supported the two-state model without any evidence of folded monomeric intermediates. Consistent with the two-state model, (1)H-(15)N HSQC spectra obtained for KSI in the unfolding transition region could be reproduced by a simple addition of the spectra of the native and the unfolded KSI. The KSI refolding kinetics as monitored by fluorescence intensity could be described as a fast first-order process followed by a second-order and a subsequent slow first-order processes with rate constants of 60 s(-)(1), 5.4 x 10(4) M(-)(1).s(-)(1), and 0.017 s(-)(1), respectively, at 0.62 M urea, suggesting that there may be a monomeric folding intermediate. After a burst phase that accounts for >83% of the total amplitude, the negative molar ellipticity at 225 nm increased slowly in a single phase at a rate comparable to that of the bimolecular intermediate step. The kinetics of activity recovery from the denatured state were markedly dependent upon the protein concentration, implying that the monomers are not fully active. Taken together, our results demonstrate that the dimerization induces KSI to fold into the complete structure and is crucial for maintaining the tertiary structure to perform efficient catalysis.  相似文献   

19.
以往对绿脓杆菌去辅基天青蛋白变性机制的研究认为它经历了一个复杂的反应过程,相比之下,锌离子替代的天青蛋白的变性符合简单的二态模型。以脲为变性剂对去辅基天青蛋白突变体M121L的变性过程进行了研究。结果表明,虽然稳态条件下突变体的变性/复性符合二态模型,但其动力学过程复杂,并可用溶液中存在着两种可以相互转化的构象的变性/复性来解释。天然态N1去折叠的速度快,其重折叠的速度也快,N1的折叠机制可用存在着折叠途径上的快速折叠中间体模型来描述;天然态N2的去折叠速度慢,其重折叠主要是首先生成天然态N1,然后再缓慢地转化成N2。添加Zn^2 能够把两种构象整合成一种构象,相应地,Zn^2 替代的天青蛋白突变体的变性过程简化为单指数过程。对该突变体的研究加深了对天青蛋白去折叠机制的理解。  相似文献   

20.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号