首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The umuC product of Escherichia coli has been suggested to have a central role in SOS induced error prone replication of DNA (Kato and Shinoura 1977). To investigate this possibility, we examined the effect of umuC mutations on error prone repair of single and double-stranded DNA phages. No Weigle reactivation of M13 phage was detected in a umuC mutant. Reactivation of lambda phage was reduced but still evident. However mutagenesis occurred in both cases. These results suggest that induced error prone replication of phage DNA can occur via umuC dependent (transdimer synthesis) and umuC independent mechanisms.  相似文献   

2.
V M Kopylov  I A Khmel' 《Genetika》1983,19(8):1221-1226
To clarify the mechanisms whereby the ColIb-P9 plasmid affects DNA repair processes, its effect was studied in mutant Escherichia coli K-12 cells with altered mutagenesis and DNA repair. The plasmid was shown to protect umuC, uvm, recL and uvrE mutants after UV irradiation. The frequency of UV-induced his+ revertants increased in the presence of the plasmid in umuC, uvm and recL mutant cells. The ColIb-P9 plasmid completely restored the UV mutability and survival of umuC mutants. These results suggest that the ColIb-P9 plasmid may encode a product similar to that of the umuC gene. In the tif1 sfiA lexA spr mutant cells where SOS functions are constitutively expressed, the ColIb-P9 plasmid increased the number of his+ revertants several times. This suggests that the action of ColIb-P9 is probably brought about not via the derepression of the recA gene but at the subsequent stages of the recA+lexA+-dependent DNA error-prone repair.  相似文献   

3.
There appears to be no dearth of mechanisms to explain spontaneous mutagenesis. In the case of base substitutions, data for bacteriophage T4 and especially for E. coli and S. cerevisiae suggest important roles in spontaneous mutagenesis for the error-prone repair of DNA damage (to produce mutations) and for error-free repair of DNA damage (to avoid mutagenesis). Data from the very limited number of studies on the subject suggest that about 50% of the spontaneous base substitutions in E. coli, and perhaps 90% in S. cerevisiae are due to error-prone DNA repair. On the other hand, spontaneous frameshifts and deletions seem to result from mechanisms involving recombination and replication. Spontaneous insertions have been shown to be important in the strongly polar inactivation of certain loci, but it is less important at other loci. Perhaps with continued study, the term "spontaneous mutagenesis" will be replaced by more specific terms such as 5-methylcytosine deamination mutagenesis, fatty acid oxidation mutagenesis, phenylalanine mutagenesis, and imprecise-recombination mutagenesis. While most studies have concentrated on mutator mutations, the most conclusive data for the actual source of spontaneous mutations have come from the study of antimutator mutations. Further study in this area, perhaps along with an understanding of chemical antimutagens, should be invaluable in clarifying the bases of spontaneous mutagenesis.  相似文献   

4.
In search of a model for the production of 'spontaneous' mutations induced by DNA damage produced during normal metabolism, 19 amino acids were tested for mutagenicity in Escherichia coli K-12 uvrB. Cystine, and, to a lesser extent, arginine and threonine were found to be antimutagenic; only phenylalanine was found to be mutagenic. At 2 mM, phenylalanine induced mutants at 1.5-2-fold above background [lacZ53(amber)----Lac+, rifampicin resistance (missense), and bacteriophage T6 resistance]. Tyrosine and, to a lesser extent, tryptophan (each at 2 mM) inhibited the mutagenicity of phenylalanine. Phenylalanine mutagenesis was detected in the uvrB strain, but not in the wild-type, uvrB umuC or uvrB lexA strains. Thus, phenylalanine seems to cause the production of excisable lesions ('UV-like'?) in DNA, which, if not excised, can induce mutations via error-prone DNA repair.  相似文献   

5.
Streptococcus pneumoniae Rx1 is capable of repairing lesions caused by DNA-damaging agents in an error-free manner but lacks a UV-inducible error-prone repair system due to the absence of chromosomally encoded UmuDC-like proteins. We have identified an operon-like structure 8 kb from the left end of the pneumococcal conjugative transposon Tn5252 that confers SOS function in the host cells. DNA sequence analysis of this region revealed the presence of four open reading frames (ORFs). The deduced amino acid sequence of one of them, ORF13, which is capable of encoding a protein of 49.7 kDa, showed significant homology to UmuC, MucB, and other proteins involved in the SOS response. The carboxy-terminal region of another, ORF14, which is predicted to encode a 26-kDa polypeptide, shared similarity with UmuD- and MucA-like proteins that carry the amino acid residues recognized by the activated RecA* protein for proteolytic cleavage. The presence of plasmids carrying subcloned DNA from this region was found to restore UV-inducible mutagenic repair of chromosomal DNA in Escherichia coli cells defective in error-prone repair as well as in pneumococcus and Enterococcus faecalis UV202. Mutations within ORF13 abolished UV-induced mutagenesis but did not affect the conjugal transposition of the element.  相似文献   

6.
J. P. McDonald  A. S. Levine    R. Woodgate 《Genetics》1997,147(4):1557-1568
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RAD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5.  相似文献   

7.
Substitution of UmuD' for UmuD does not affect SOS mutagenesis   总被引:1,自引:0,他引:1  
In order to study the role of UmuDC proteins in SOS mutagenesis, we have constructed new Escherichia coli K-12 strains to avoid i) over-production of Umu proteins, ii) the formation of unwanted mixed plasmid and chromosomal Umu proteins upon complementation. We inserted a mini-kan transposon into the umuD gene carried on a plasmid. The insertion at codon 24 ends protein translation and has a polar effect on the expression of the downstream umuC gene. We transferred umuD24 mutation to the E coli chromosome. In parallel, we subcloned umuD+ umuC+ or umuD' umuC+ genes into pSC101, a low copy number plasmid. In a host with the chromosomal umuD24 mutation, plasmids umuD+ umuC+ or umuD' umuC+ produced elevated resistance to UV light and increased SOS mutagenesis related to a gene dosage of about 3. UV mutagenesis was as high in umuD' umuC+ hosts devoid of UmuD+ protein as in umuD+ umuC+ hosts. UmuD' protein, the maturated form of UmuD, can substitute for UmuD in SOS mutagenesis.  相似文献   

8.
Summary Resistance transfer factors are natural conjugative plasmids encoding antibiotic resistance. Some also encode mutagenic DNA repair genes giving resistance to DNA damage and induced mutagenesis. It has been shown that antibiotic resistance has been acquired by recent transposition events; however, we show here that mutagenic repair genes existed much earlier on these types of plasmids. Conjugative plasmids from eight incompatibility groups from the Murray collection of pre-antibiotic era enterobacteria were tested for complementation of mutagenic repair-deficient Escherichia coli umuC36. Although none of these plasmids carry transposon-encoded drug resistance genes, IncI1 and IncB plasmids were identified which restored ultraviolet resistance and induced mutability to umuC36 mutants. Furthermore they increased the UV resistance and induced mutability of wild-type E. coli, Klebsiella aerogenes and Citrobacter intermedius, thus showing that they could confer a general selective advantage to a variety of hosts. Like know mutagenic repair genes, complementation by these plasmid genes required the SOS response of the host cell. Nucleotide hybridisation showed that these plasmids harboured sequences similar to the impCAB locus, the mutagenic repair operon of modern-day IncI1 plasmids. The evolution of mutagenic repair genes is discussed.  相似文献   

9.
In response to environmentally caused DNA damage, SOS genes are up-regulated due to RecA-mediated relief of LexA repression. In Escherichia coli, the SOS umuDC operon is required for DNA damage checkpoint functions and for replicating damaged DNA in the error-prone process called SOS mutagenesis. In the model soil bacterium Acinetobacter baylyi strain ADP1, however, the content, regulation, and function of the umuDC operon are unusual. The umuC gene is incomplete, and a remnant of an ISEhe3-like transposase has replaced the middle 57% of the umuC coding region. The umuD open reading frame is intact, but it is 1.5 times the size of other umuD genes and has an extra 5' region that lacks homology to known umuD genes. Analysis of a umuD::lacZ fusion showed that umuD was expressed at very high levels in both the absence and presence of mitomycin C and that this expression was not affected in a recA-deficient background. The umuD mutation did not affect the growth rate or survival after UV-induced DNA damage. However, the UmuD-like protein found in ADP1 (UmuDAb) was required for induction of an adjacent DNA damage-inducible gene, ddrR. The umuD mutation specifically reduced the DNA damage induction of the RecA-dependent DNA damage-inducible ddrR locus by 83% (from 12.9-fold to 2.3-fold induction), but it did not affect the 33.9-fold induction of benA, an unrelated benzoate degradation gene. These data suggest that the response of the ADP1 umuDC operon to DNA damage is unusual and that UmuDAb specifically regulates the expression of at least one DNA damage-inducible gene.  相似文献   

10.
Mutagenesis induced by the alkylating agent ethyl methanesulfonate (EMS) is thought to occur primarily via mechanisms that involve direct mispairing at alkylated guanines, in particular, O6-ethyl guanine. Recent evidence indicates that alkylation of guanine at the O-6 position might enhance the deamination of cytosine residues in the complementary strand. To determine whether such deamination of cytosine could play a role in the production of mutations by EMS, the efficacy of this agent was tested in uracil-DNA glycosylase deficient (Ung) strains of Escherichia coli. The Ung- strains showed a linear response with increasing doses of EMS. This response was independent of the umuC gene product. In contrast, the Ung+ strains yielded a dose-squared response that became linear at higher doses of EMS when the cells were defective for the umuC gene product. These results support a model for mutagenesis involving the deamination of cytosines opposite O6-alkylated guanines followed by an error-prone repair event.  相似文献   

11.
Stress-induced mutation is a collection of molecular mechanisms in bacterial, yeast and human cells that promote mutagenesis specifically when cells are maladapted to their environment, i.e. when they are stressed. Here, we review one molecular mechanism: double-strand break (DSB)-dependent stress-induced mutagenesis described in starving Escherichia coli. In it, the otherwise high-fidelity process of DSB repair by homologous recombination is switched to an error-prone mode under the control of the RpoS general stress response, which licenses the use of error-prone DNA polymerase, DinB, in DSB repair. This mechanism requires DSB repair proteins, RpoS, the SOS response and DinB. This pathway underlies half of spontaneous chromosomal frameshift and base substitution mutations in starving E. coli [Proc Natl Acad Sci USA 2011;108:13659-13664], yet appeared less efficient in chromosomal than F' plasmid-borne genes. Here, we demonstrate and quantify DSB-dependent stress-induced reversion of a chromosomal lac allele with DSBs supplied by I-SceI double-strand endonuclease. I-SceI-induced reversion of this allele was previously studied in an F'. We compare the efficiencies of mutagenesis in the two locations. When we account for contributions of an F'-borne extra dinB gene, strain background differences, and bypass considerations of rates of spontaneous DNA breakage by providing I-SceI cuts, the chromosome is still ~100 times less active than F. We suggest that availability of a homologous partner molecule for recombinational break repair may be limiting. That partner could be a duplicated chromosomal segment or sister chromosome.  相似文献   

12.
13.
Recently, the Escherichia coli umuD and umuC genes have been shown to encode E. coli's fifth DNA polymerase, pol V (consisting of a heterotrimer of UmuD'(2)C). The main function of pol V appears to be the bypass of DNA lesions that would otherwise block replication by pols I-IV. This process is error-prone and leads to a striking increase in mutations at sites of DNA damage. While the enzymatic properties of pol V are now only beginning to be fully appreciated, a great deal is known about how E. coli regulates the intracellular levels of the Umu proteins so that the lesion-bypassing activity of pol V is available to help cells survive the deleterious consequences of DNA damage, yet keeps any unwarranted activity on undamaged templates to a minimum. Our review summarizes the multiple restrictions imposed upon pol V, so as to limit its activity in vivo and, in particular, highlights the pivotal role that the N-terminal tail of UmuD plays in regulating SOS mutagenesis.  相似文献   

14.
Plasmid DNA covalently modified with benzopyrene diol epoxide was introduced into Escherichia coli strains which differed in their capacity for repair and mutagenesis at various times after SOS induction. The uvrA+-dependent repair activity rose and fell before umuC+SOS-dependent mutagenesis was fully expressed.  相似文献   

15.
16.
The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.  相似文献   

17.
The antitumour drug nitracrine [1-nitro-9-(dimethylaminopropylamino)acridine], known to be a potent frameshift mutagen in strains of Salmonella typhimurium, also strongly reverts the lacZ19124 frameshift marker in Escherichia coli. The results in E. coli indicate that nitracrine causes DNA damage which can be excised by the UvrA,B,C excinuclease, can generate mutations by a recA-dependent mechanism, and gives enhanced yields of mutants when plasmid pKM101 is present. Despite these observations, mutagenesis by nitracrine appears to be independent of the UmuC gene product, and hence nitracrine differs from most (but not all) other chemicals which generate mutations via the SOS response. Given that umuC mutants are about as mutable by nitracine as the wild-type parent strain, it is somewhat surprising that plasmid pKM101 causes an enhancement of nitracrine mutagenesis. Nevertheless, we have found that the observed enhancement of mutagenesis by pKM101 is a function of the mucB gene, normally assumed to be essentially homologous to the umuC gene.  相似文献   

18.
Lada AG  Iyer LM  Rogozin IB  Aravind L  Pavlov IuI 《Genetika》2007,43(10):1311-1327
M.E. Lobashev has brilliantly postulated in 1947 that error-prone repair contribute to mutations in cells. This was shown to be true once the mechanisms of UV mutagenesis in Escherichia coli were deciphered. Induced mutations are generated during error-prone SOS DNA repair with the involvement of inaccurate DNA polymerases belonging to the Y family. Currently, several distinct mutator enzymes participating in spontaneous and induced mutagenesis have been identified. Upon induction of these proteins, mutation rates increase by several orders of magnitude. These proteins regulate the mutation rates in evolution and in ontogeny during immune response. In jawed vertebrates, somatic hypermutagenesis occurs in the variable regions of immunoglobulin genes, leading to affinity maturation of antibodies. The process is initiated by cytidine deamination in DNA to uracil by AID (Activation-Induced Deaminase). Further repair of uracil-containing DNA through proteins that include the Y family DNA polymerases causes mutations, induce gene conversion, and class switch recombination. In jawless vertebrates, the variable lymphocyte receptors (VLR) serve as the primary molecules for adaptive immunity. Generation of mature VLRs most likely depends on agnathan AID-like deaminases. AID and its orthologs in lamprey (PmCDA1 and PMCDA2) belong to the AID/APOBEC family of RNA/DNA editing cytidine deaminases. This family includes enzymes with different functions: APOBEC1 edits RNA, APOBEC3 restricts retroviruses. The functions of APOBEC2 and APOBEC4 have not been yet determined. Here, we report a new member of the AID/APOBEC family, APOBEC5, in the bacterium Xanthomonas oryzae. The widespread presence of RNA/DNA editing deaminases suggests that they are an ancient means of generating genetic diversity.  相似文献   

19.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

20.
A new type of radiation-sensitive mutant of S. cerevisiae is described. The recessive radH mutation sensitizes to the lethal effect of UV radiations haploids in the G1 but not in the G2 mitotic phase. Homozygous diploids are as sensitive as G1 haploids. The UV-induced mutagenesis is depressed, while the induction of gene conversion is increased. The mutation is believed to channel the repair of lesions engaged in the mutagenic pathway into a recombination process, successful if the events involve sister-chromatids but lethal if they involve homologous chromosomes. The sequence of the RADH gene reveals that it may code for a DNA helicase, with a Mr of 134 kDa. All the consensus domains of known DNA helicases are present. Besides these consensus regions, strong homologies with the Rep and UvrD helicases of E. coli were found. The RadH putative helicase appears to belong to the set of proteins involved in the error-prone repair mechanism, at least for UV-induced lesions, and could act in coordination with the Rev3 error-prone DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号