共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
少突胶质细胞的发育分化是由遗传的和后生的机制共同参与调控的一系列动态过程,其中,对于后生调控机制的研究称为表观遗传学。既往对少突胶质细胞的研究主要集中在相关基因本身的特性研究。近年来,关于寻址组蛋白修饰的研究使我们对少突胶质细胞发育和衰老过程中基因表达的后生调控有了新的认识。这些理论将有助于我们更好地理解脱髓鞘及衰老后髓鞘修复障碍的原因和防治途径。 相似文献
5.
6.
7.
8.
9.
10.
11.
12.
13.
Sadli N Ackland ML De Mel D Sinclair AJ Suphioglu C 《Cellular physiology and biochemistry》2012,29(1-2):87-98
Dietary intake of zinc and omega-3 fatty acids (DHA) have health benefits for a number of human diseases. However, the molecular basis of these health benefits remains unclear. Recently, we reported that zinc and DHA affect expression levels of histones H3 and H4 in human neuronal M17 cells. Here, using immunoblotting and densitometric analysis, we aimed to investigate the effect of zinc and DHA on post-translational modifications of histone H3 in M17 cells. In response to increase in zinc concentration, we observed increase in deacetylation, methylation and phosphorylation of H3 and decrease in acetylation. We also investigated the role of zinc in apoptosis, and found that zinc reduced the levels of the anti-apoptotic marker Bcl-2 while increasing the apoptotic marker caspase-3 levels, correlating with cell viability assays. Conversely, DHA treatment resulted in increase in acetylation of H3 and Bcl-2 levels and decrease in deacetylation, methylation, phosphorylation of H3 and caspase-3 levels, suggesting that DHA promotes gene expression and neuroprotection. Our novel findings show the opposing effects of zinc and DHA on the epigenetic regulation of human neuronal cells and highlight the potential benefit of dietary intake of DHA for management of neurodegenerative diseases. 相似文献
14.
15.
Wei LN 《Biochimica et biophysica acta》2012,1821(1):206-212
Retinoic acid (RA) acts by binding to nuclear RA receptors (RARs) to regulate a broad spectrum of downstream target genes in most cell types examined. In cytoplasm, RA binds specifically to cellular retinoic acid binding proteins I (CRABPI), and II. Although the function of CRABPI in animals remains the subject of debate, it is believed that CRABPI binding facilitates RA metabolism, thereby modulating the concentration of RA and the type of RA metabolites in cells. The basal promoter of the CrabpI gene is a housekeeping promoter that can be regulated by thyroid hormones (T3), DNA methylation, sphinganine, and ethanol acting on its upstream regulatory region. T3 regulation of CrabpI is mediated by the binding of thyroid hormone receptor (TR) to a TR response element (TRE) approximately 1 kb upstream of the basal promoter. Specifically, in the adipocyte differentiation process, T3 regulation is bimodal and closely associated with the cellular differentiation status: T3 activates CrabpI in predifferentiated cells (e.g., mesenchymal precursors or fibroblasts), but suppresses this gene once cells are committed to adipocyte differentiation. These disparate effects are functions of T3-triggered differential recruitment of coregulatory complexes in conjunction with chromatin looping/folding that alters the configuration of this genomic locus along adipocyte differentiation. Subsequent sliding, disassembly and reassembly of nucleosomes occur, resulting in specific changes in the conformation of the basal promoter chromatin at different stages of differentiation. This chapter summarizes studies illustrating the epigenetic regulation of CrabpI expression during adipocyte differentiation. Understanding the pathways regulating CrabpI in this specific context might help to illuminate the physiological role of CRABPI in vivo. This article is part of a special issue entitled: Retinoid and Lipid Metabolism. 相似文献
16.
Mori M Nakajima M Mikami Y Seki S Takigawa M Kubo T Ikegawa S 《Biochemical and biophysical research communications》2006,341(1):121-127
Cartilage intermediate layer protein (CILP) is an extracellular matrix protein abundant in cartilaginous tissues. CILP is implicated in common musculoskeletal disorders, including osteoarthritis and lumbar disc disease. Regulation of the CILP gene is largely unknown, however. We have found that CILP mRNA expression is induced by TGF-β1 and dependent upon signaling via TGF-β receptors. TGF-β1 induction of CILP is mediated by Smad3, which acts directly through cis-elements in the CILP promoter region. Pathways other than Smad3 also are involved in TGF-β1 induction of CILP. These observations, together with the finding that CILP protein binds and inhibits TGF-β1, suggest that CILP and TGF-β1 may form a functional feedback loop that controls chondrocyte metabolism. 相似文献
17.
The review summarizes the authors' and literature data on accumulation of DNA breaks in differentiating cells. Large 50-kb free DNA fragments were observed by several research teams in non-apoptotic insect, mammal, and plant cells. More intense DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes, and neutrophils. In general, accumulation of DNA breaks in differentiating cells cannot be attributed to a decrease in the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulating the differentiation process. Scarce data on localization of the differentiation-associated DNA breaks indicate their preferable accumulation in specific DNA sequences including the nuclear matrix attachment sites. he same sites are degraded at early stages of apoptosis. Recent data on non-apoptotic function of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells, resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA breaks appears to be a prospective research direction. 相似文献
18.
The review summarizes the authors’ and literature data on accumulation of DNA breaks in differentiating cells. Large 50-kb free DNA fragments were observed by several research teams in non-apoptotic insect, mammal, and plant cells. More intense DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes, and neutrophils. In general, accumulation of DNA breaks in differentiating cells cannot be attributed to a decrease in the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulating the differentiation process. Scarce data on localization of the differentiation-associated DNA breaks indicate their preferable accumulation in specific DNA sequences including the nuclear matrix attachment sites. The same sites are degraded at early stages of apoptosis. Recent data on non-apoptotic function of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells, resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA breaks appears to be a prospective research direction. 相似文献
19.