首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Pleistocene glaciations on the genetic characteristics of the most austral conifer in the world, Pilgerodendron uviferum, were analysed with specific reference to the hypothesis that the species persisted locally in ice‐free areas in temperate South America. It was expected that genetic variation would decrease with latitude, given that ice fields were larger in southern Patagonia and thus refugia were probably located towards the northern distributional limit of the species as suggested by the fossil record. In addition, an increase in among‐population genetic divergence was expected with increasing distance to putative glacial refugia. We examined the relationship between location and within‐population variability indices of 20 Pilgerodendron populations derived from isozyme analyses. We analysed possible refugia hypotheses by the distribution of allele frequencies using multivariate discriminant analysis. The degree of genetic differentiation with geographical distance between all population pairs was investigated by Mantel tests. Results indicated that Pilgerodendron populations are highly monomorphic, probably reflecting past population bottlenecks and reduced gene flow. Southernmost populations tend to be the least genetically variable and were therefore probably more affected by glacial activity than northern ones. Populations located outside ice limits seem to have been isolated during the glacial period. The presence of centres of genetic diversity, together with the lack of a significant correlation between genetic and geographical distances and the absence of geographical patterns of allelic frequencies at most analysed alleles, may indicate that Pilgerodendron did not advance southward after the last glaciation from a unique northern refugium, but spread from several surviving populations in ice‐free areas in Patagonia instead.  相似文献   

2.
JAVIER GONZALEZ  MICHAEL WINK 《Ibis》2010,152(4):761-774
Nucleotide sequence data (cytochrome b) and ISSR genomic fingerprints were used to analyse the genetic variation and population differentiation in Thorn‐tailed Rayadito, a widespread Patagonian forest bird. We included samples from eight populations of Thorn‐tailed Rayadito covering most of the distribution range of the species: from fragmented patches of Olivillo forest in northern Chile to Isla Navarino forests in the extreme south of South America. Low levels of genetic diversity were found among populations, with a large within‐population molecular variance indicating high levels of gene flow. The multivariate and cluster analyses based on ISSR markers show that the subspecies bullocki (from Mocha Island) differs significantly from all other populations. The subspecies fulva (Chiloé Island) shows less differentiation than bullocki, sharing several alleles with continental populations. Bayesian analyses suggest that the Mocha Island population contributes most to the total genetic diversity observed in the species. Mantel tests revealed no significant correlation between geographical distance and pairwise genetic distance and cytochrome b sequence analyses failed to detect differentiation among subspecies. Mocha Island might have been a palaeorefuge and this population may have diversified by genetic drift after the last glacial maximum. There is also the possibility of a postglacial colonization of the Thorn‐tailed Rayadito from an austral palaeorefugium, supporting a multiple refugia hypothesis. This study illustrates the usefulness of the rarely used ISSR genomic fingerprint method in avian phylogeography.  相似文献   

3.
Aim The study of geographical discontinuities in the distribution of genetic variability in natural populations is a central topic in both evolutionary and conservation research. In this study, we aimed to analyse (1) the factors associated with genetic diversity at the landscape spatial scale in the highly specialized grasshopper Mioscirtus wagneri and (2) to identify the relative contribution of alternative factors to the observed patterns of genetic structure in this species. Location La Mancha region, Central Spain. Methods We sampled 28 populations of the grasshopper M. wagneri and genotyped 648 individuals at seven microsatellite loci. We employed a causal modelling approach to identify the most influential variables associated with genetic differentiation within a multiple hypothesis‐testing framework. Results We found that genetic diversity differs among populations located in different river basins and decreases with population isolation. Causal modelling analyses showed variability in the relative influence of the studied landscape features across different spatial scales. When a highly isolated population is considered, the analyses suggested that geographical distance is the only factor explaining the genetic differentiation between populations. When that population is excluded, the causal modelling analysis revealed that elevation and river basins are also relevant factors contributing to explaining genetic differentiation between the studied populations. Main conclusions These results indicate that the spatial scale considered and the inclusion of outlier populations may have important consequences on the inferred contribution of alternative landscape factors on the patterns of genetic differentiation even when all populations are expected to similarly respond to landscape structure. Thus, a multiscale perspective should also be incorporated into the landscape genetics framework to avoid biased conclusions derived from the spatial scale analysed and/or the geographical distribution of the studied populations.  相似文献   

4.
1. Determined by landscape structure as well as dispersal‐related traits of species, connectivity influences various key aspects of population biology, ranging from population persistence to genetic structure and diversity. Here, we investigated differences in small‐scale connectivity in terms of gene flow between populations of two ecologically important invertebrates with contrasting dispersal‐related traits: an amphipod (Gammarus fossarum) with a purely aquatic life cycle and a mayfly (Baetis rhodani) with a terrestrial adult stage. 2. We used highly polymorphic markers to estimate genetic differentiation between populations of both species within a Swiss pre‐alpine catchment and compared these results to the broader‐scale genetic structure within the Rhine drainage. Landscape genetic approaches were used to test for correlations of genetic and geographical structures and in‐stream barrier effects. 3. We found overall very weak genetic structure in populations of B. rhodani. In contrast, G. fossarum showed strong genetic differentiation, even at spatial scales of a few kilometres, and a clear pattern of isolation by distance. Genetic diversity decreased from downstream towards upstream populations of G. fossarum, suggesting asymmetric gene flow. Correlation of genetic structure with landscape topography was more pronounced in the amphipod. Our study also indicates that G. fossarum might be capable of dispersing overland in headwater regions and of crossing small in‐stream barriers. 4. We speculate that differences in dispersal capacity but also habitat specialisation and potentially the extent of local adaptation could be responsible for the differences in genetic differentiation found between the two species. These results highlight the importance of taking into account dispersal‐related traits when planning management and conservation strategies.  相似文献   

5.
Abstract Many natural populations in areas of continuous habitat exhibit some form of local genetic structure. Anthropogenic habitat fragmentation can also strongly influence the dynamics of gene flow between populations. We used eight microsatellite markers to investigate the population genetic structure of an abundant forest species, the Australian bush rat (Rattus fuscipes), in the subtropical forests of south‐east Queensland. Five sites were sampled, allowing pairwise comparisons within continuous habitat and across clearings. Weak, but significant population differentiation and a significant pattern of isolation by distance was detected over the small scale (<10 km) of this study. Fine‐scale analysis at a single site (<1 km) showed a significant correlation between individual female genetic distance and geographical distance, but no similar pattern among male individuals. There was no evidence of increased population differentiation across clearings relative to comparisons within continuous forest. This was attributed to dispersal within corridors of remnant and revegetated habitat between the forested areas. We concluded that an inherently restricted dispersal ability, female philopatry and natural habitat heterogeneity play an important part in the development of genetic structure among populations of R. fuscipes. It is important to understand the relationship between landscape features and the pattern of gene flow among continuous populations, as this allows us to predict the impact of fragmentation on natural populations.  相似文献   

6.
Pomegranate Punica granatum was first introduced to Sri Lanka, possibly through ancient trade routes, thousands of years ago. However, there is no information about the diversity of the pomegranate germplasm in the country, which is important both for breeding new varieties and for conservation efforts. We used inter‐simple sequence repeat (ISSR) regions to investigate the genetic diversity and population structure of pomegranate on the island of Sri Lanka. Hundred and twenty accessions representing seven populations from all pomegranate growing regions of the country were analyzed using 20 ISSR primers. A total of 107 loci were amplified with an average polymorphism information content of 0.3. While the average inter‐population genetic distance was 0.141, it was 0.149 between populations, indicating moderate genetic diversity both within and among populations. Analysis of molecular variance and Nei's genetic diversity revealed higher genetic variation within populations than among populations, and low genetic differentiation (GST) in pair‐wise comparison of populations also suggested limited population differentiation. A considerable level of among‐population gene flow (Nm) was indicated, irrespective of geographical structure and distances. The results of cluster analysis was also in agreement with above analysis and suggest human mediated gene flow and migration patterns. Cluster analysis revealed two main population clusters with several sub‐clusters. While these clusters did not show any correlation with geography, all red peeled accessions clustered into a small sub‐cluster. The results indicate that analysis of ISSR variability is sufficiently informative and powerful to assess the genetic diversity of P. granatum landraces in Sri Lanka.  相似文献   

7.
The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per‐capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within‐population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population‐genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per‐capita seed number was not associated with distance to the range centre, but seed number/m2 increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among‐population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.  相似文献   

8.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

9.
Identification of genes involved in local adaptation is particularly challenging for species functioning as a network of interconnected populations undergoing frequent extinctions–recolonizations, because populations are submitted to contrasted evolutionary pressures. Using amplified fragment length polymorphism markers, population genetic structure of the mosquito Aedes rusticus was analysed in five geographical areas of the French Rhône‐Alpes region. We included a number of sites that were treated with the bio‐insecticide Bacillus thuringiensis israelensis (Bti) for more than 15 years. Analysis of molecular variance revealed that most of the genetic variability was found within populations (96%), with no significant variation among geographical areas, although variation among populations within areas (4%) was significant. The global genetic differentiation index FST was low (0.0366 ± 0.167). However, pairwise FST values were significant and no isolation‐by‐distance at the regional level was observed, suggesting a metapopulation structure in this species. Bti‐treatment had no effect on genetic structure and on within‐population genetic diversity. Potential signatures of positive selection associated with Bti‐treatment were detected for five loci, even though toxicological bioassays performed on field‐collected larvae showed no significant difference in mortality between Bti‐treated and nontreated sites. The difficulty of detecting moderate resistance in field‐collected larvae together with possible differential persistence of toxins in the environment may explain our inability to detect a toxicological response to Bti in treated sites. The evidence for positive selection occurring at several genomic regions suggests a first step towards Bti resistance in natural mosquito populations treated with this bio‐insecticide. Furthermore, this signal was detectable using genomic tools before any toxicological evidence for resistance could be identified.  相似文献   

10.
The distribution of neutral genetic variability within and among sets of populations results from the combined actions of genetic drift, migration, extinction and recolonization processes, mutation, and the mating system. We here analyzed these factors in 38 populations of the hermaphroditic snail Bulinus truncatus. The sampling area covered a large part of the species range. The variability was analyzed using four polymorphic microsatellite loci. A very large number of alleles (up to 55) was found at the level of the whole study. Observed heterozygote deficiencies within populations are consistent with very high selfing rates, generally above 0.80, in all populations. These should depress the variability within populations, because of low effective size, genetic hitchhiking, and background selection, whatever the model of mutation assumed. However, that some populations exhibit much more variability than others suggests that historical demographic processes (e.g., population size variation, bottlenecks, or founding events) may play a significant role. A hierarchical analysis of the distribution of the variability across populations indicates a strong pattern of isolation by distance, whatever the geographical scale considered. Our analysis also illustrates how the mutation rate may affect population differentiation, as different mutation rates result in different levels of homoplasy at microsatellite loci. The effects of both genetic drift and gene flow vary with the temporal and spatial scales considered in B. truncatus populations.  相似文献   

11.
This study investigated allozyme and morphometric variability within the genus Cynopterus, with particular emphasis on C. nusatenggara, which is endemic to Wallacea, the area encompassing the Oriental-Australian biogeographic interface. The genetic distances between Cynopterus species are small by mammalian standards and suggest that this genus has undergone a recent series of speciation events. The genetic distance between populations of C. nusatenggara is strongly correlated with both the contemporary sea-crossing distance between islands and the estimated sea crossing at the time of the last Pleistocene glacial maximum, 18,000 b .p . This observation, together with low levels of population substructure within islands as shown by F-statistics, indicates that the sea is a primary and formidable barrier to gene exchange. The genetic distance and the great-circle geographical distance between the populations of C. nusatenggara are not correlated, although a principal-coordinates analysis of genetic distance reveals relationships between the populations that are similar to their geographical arrangement. A strong negative correlation exists between the level of heterozygosity within island populations of C. nusatenggara and the minimum sea-crossing distance to the nearest large source population. This is interpreted as reflecting an isolation effect of the sea, leading to reduced heterozygosity in populations that have larger sea barriers between them and the large source islands. Independently of this, heterozygosity is negatively associated with longitude, which in turn is associated with systematic changes in the environment such as a gradual decline in rainfall from west to east. The association between heterozygosity and longitude is interpreted as reflecting an association between genetic and environmental variance and supports the niche-width theory of genetic variance. Morphometric variability did not show any of the main effects demonstrated in the genetic data. Furthermore, there was no evidence that, at the level of individuals, genetic and morphometric variability were associated.  相似文献   

12.
不同种源马尾松ISSR遗传结构及影响因素分析   总被引:1,自引:0,他引:1  
杜明凤  丁贵杰 《广西植物》2016,36(9):1068-1075
应用ISSR分子标记技术,对来自广西、贵州3个种源的马尾松开展遗传多样性、遗传结构及遗传距离等研究。结果表明:从100条引物中筛选出12条引物,共扩增出92个条带,86条具有多态性。 POPGENE分析显示:马尾松群体水平上的Nei’ s基因多样性指数的变化范围为0.1824~0.2065,Shannon遗传多样性指数的变化范围为0.2818~0.3178,3个群体的多态性水平差异不大;物种水平上的多态性百分率为93.48%, Nei’ s基因多样性指数为0.2842,Shannon信息指数为0.4381;表明马尾松在物种水平上具有较高水平的遗传多样性。遗传结构分析显示:马尾松的基因分化系数( Gst)为0.3153,表明遗传变异主要来源于群体内;基因流Nm为1.0853,表明不同群体间存在一定的基因流动。 AMOVA分析显示:马尾松的遗传分化指数( Fst)为0.246( P=0.001),表明群体间已出现明显的遗传分化。 UPGMA聚类和Mantel检测结果显示:每个群体内的个体均能很好地首先聚集为一个分支,群体间的遗传距离与地理距离之间存在显著相关性( r=0.972, P=0.001)。这说明马尾松在裸子植物界中具有较高水平的遗传多样性,遗传变异主要分布于群体内,群体间已出现了明显的遗传分化,这种分化并非由遗传漂变引起,可能与地理生境的差异有关。  相似文献   

13.
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.  相似文献   

14.
Random amplified polymorphic DNA (RAPD) marker variation was analyzed in female gametophytes in natural populations of Gelidium canariense (Grunow) Seoane‐Camba ex Haroun, Gil‐Rodríguez, Diaz de Castro et Prud'Homme van Reine from the Canary Islands to estimate the degree and distribution of genetic variability and differentiation. A total of 190 haploid individuals were analyzed with 60 polymorphic RAPDs bands which produced 190 distinct multilocus genotypes. A high level of polymorphism was detected in all populations analyzed. Within‐population gene diversity ranged from 0.156 to 0.264. The populations on the island of Gran Canaria showed higher genetic variation than the other populations analyzed. The partitioning of molecular variance by analysis of molecular variance showed that most genetic variation resides within populations (68.85%). These results suggest that sexual reproduction is the predominant mode of reproduction for G. canariense gametophytic populations, and the main determinant in reaching high levels of genetic diversity. The Neighbor‐Joining tree and FCA analysis displayed two subclusters that correspond to the populations from the western islands (Tenerife, La Palma, Gomera) and the eastern island (Gran Canaria). In addition, we have detected a significant relationship between FST/(1?FST) and geographical distance consistent with data on water circulation and age of islands. The results obtained agree with an isolation by distance model, with gene flow from eastern to the western islands, and a high level of genetic differentiation between populations (FST=0.311, P<0.001).  相似文献   

15.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

16.
This study explores the genetic diversity and structure of Meloidogyne enterolobii in mulberry in China. The COI mitochondrial gene (mtCOI) in M.enterolobii populations in Guangdong, Guangxi, and Hunan Provinces was PCR‐amplified, sequenced, and analyzed for genetic diversity. The total number of variations, haplotypes (Hap), the average number of nucleotide differences (k), haplotype diversity (H), and nucleotide diversity (π) of mtCOI were 25, 11, 4.248, 0.900, and 0.00596, respectively. Insignificant differences in Fst value (0.0169) and a high level of gene flow (7.02) were detected among the 19‐mulberry root‐knot nematode populations, and high genetic variation within each population and a small genetic distance among populations were observed. Both phylogenetic analyses and network mapping of the 11 haplotypes revealed a dispersed distribution pattern of 19 mulberry root‐knot nematode populations and an absence of branches strictly corresponding to the 19 range sampling sites. The neutrality test and mismatch analysis indicated that mulberry root‐knot nematode populations experienced a population expansion in the past. The analysis of molecular variance (AMOVA) revealed that the genetic differentiation of M. enterolobii was mainly contributed by the variation within each group. No significant correlation was found between the genetic distance and geographical distance of M. enterolobii populations. The findings of this study provide a profound understanding of the M. enterolobii population and will inform the development of strategies to combat and manage root‐knot nematodes in mulberry.  相似文献   

17.
Genetic and morphometric variation was examined in eleven island populations of the horse‐shoe bat, Rhinolophus affinis, at the easterly end of this widespread species’ range and encompassing the Australian–Oriental biogeographic interface. Allozyme variation revealed mean heterozygosity levels within islands of 0.047, which is near the mammalian average. However, heterozygosity tended to decline from west to east as populations approached the periphery of the species’ distribution, and was lowest in those islands that were separated by the greatest sea‐crossing from source populations. There is extensive between‐island genetic differentiation (mean FST = 0.40) and relationships between islands are associated with their arrangement in geographical space; genetic distance is correlated with geographical distance and the genetic arrangement of islands is associated with longitude. The arrangement of islands as indicated by variation in body and skull metrics is also associated with their geographical positions, and the metric and genetic measures are themselves associated. While other taxa in the region have shown genetic‐geographical concordances, R. affinis is the only one that displays concordant patterns in metrical features. These patterns in biological diversity are interpreted as arising from the sequential island population structure and clines in key biogeographic gradients.  相似文献   

18.

Aim

To test the influence of historical and contemporary environment in shaping the genetic diversity of freshwater fauna we contrast genetic structure in two co‐distributed, but ecologically distinct, rainbowfish; a habitat generalist (Melanotaenia splendida) and a habitat specialist (M. trifasciata).

Location

Fishes were sampled from far northern Australia (Queensland and Northern Territory).

Methods

We used sequence data from one mitochondrial gene and one nuclear gene to investigate patterns of genetic diversity in M. splendida and M. trifasciata to determine how differences in habitat preference and historical changes in drainage boundaries affected patterns of connectivity.

Results

Melanotaenia splendida showed high levels of genetic diversity and little population structure across its range. In contrast, M. trifasciata showed high levels of population structure. Whereas phylogeographic patterns differed, both species showed a strong relationship between geographical distance and genetic differentiation between populations. Melanotaenia splendida showed a shallower relationship with geographical distance, and genetic differentiation was best explained by stream length and a lower scaled ocean distance (11.98 times coast length). For M. trifasciata, genetic differentiation was best explained by overwater distance between catchments and ocean distance scaled at 1.16 × 106 times coast length.

Main conclusions

Connectivity of freshwater populations inhabiting regions periodically interconnected during glacial periods appears to have been affected by ecological differences between species. Species‐specific differences are epitomized here by the contrast between co‐distributed congeners with different habitat requirements: for the habitat generalist, M. splendida, there was evidence for greater historical genetic connectivity with oceans as a weaker barrier to gene exchange in contrast with the habitat specialist, M. trifasciata.  相似文献   

19.
The present study considers genetic diversity of 38 populations in 4 Cirsium species of the genus Cirsium Mill. (Asteraceae), occurring in different ecological regions and tries to compare degree of genetic variability among the species with wide geographical distribution versus endemic C. pyramidale showing confined geographical distribution. The results showed that the endemic species has similar value of genetic diversity parameters as the species with wider distribution. We also studied the possible admixture nature of these populations and tried to understand the relation between genetic changes, geographical distribution and polyploidy level and chromosome pairing in these species. ISSR analysis showed population difference in allele composition and frequency. Clustering and PcoA ordination produced different groupings in each species, while STRUCTURE and reticulation analyses revealed high degree of genetic admixture and gene exchange among populations as well as allelic rearrangement. No significant correlation was observed between geographical distance and genetic distance of the populations and AMOVA test revealed no significant difference among populations in each species studied. However, high amount of within population variation occurred in all 4 species indicating their cross-pollination nature and high genetic admixture. The populations also varied in chiasma frequency and chromosome pairing as well as the occurrence of heterozygote translocations all creating more variability to be used by plants for local adaptation.  相似文献   

20.
1. Unionid mussels are highly threatened, but little is known about genetic structure in populations of these organisms. We used allozyme electrophoresis to examine partitioning of genetic variation in three locally abundant and widely distributed species of mussels from a catchment in Ohio. 2. Within‐population variation was similar to that previously reported for freshwater mussels, but genotype frequencies exhibited heterozygote deficiencies in many instances. All three species exhibited significant among‐population variation. Evidence of isolation‐by‐distance was found in Elliptio dilatata and Ptychobranchus fasciolaris, while Lampsilis siliquoidea showed no geographical pattern of among‐population variation. 3. Our results suggest that the isolating effects of genetic drift were greater in L. siliquoidea than in the other species. Differentiation of populations occurred at a much smaller spatial scale than has previously been found in freshwater mussels. Differences among species may reflect differences in the dispersal abilities of fishes that serve as hosts for the glochidia larvae of mussels. 4. Based on our results, we hypothesise that species of mussels that are common to large rivers exhibit relatively large amounts of within‐population genetic variation and little differentiation over large geographical distances. Conversely, species typical of small streams show lower within‐population genetic variation and populations will be more isolated. If this hypothesis can be supported, it may prove useful in the design of conservation strategies that maintain the genetic structure of target species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号