首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9–30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses.  相似文献   

2.
Circular DNA elements are involved in genome plasticity, particularly of tandem repeats. However, amplifications of DNA segments in Saccharomyces cerevisiae reported so far involve pre-existing repetitive sequences such as ribosomal DNA, Ty elements and Long Terminal Repeats (LTRs). Here, we report the generation of an eccDNA, (extrachromosomal circular DNA element) in a region without any repetitive sequences during an adaptive evolution experiment. We performed whole genome sequence comparison between an efficient D-xylose fermenting yeast strain developed by metabolic and evolutionary engineering, and its parent industrial strain. We found that the heterologous gene XylA that had been inserted close to an ARS sequence in the parent strain has been amplified about 9 fold in both alleles of the chromosomal locus of the evolved strain compared to its parent. Analysis of the amplification process during the adaptive evolution revealed formation of a XylA-carrying eccDNA, pXI2-6, followed by chromosomal integration in tandem arrays over the course of the evolutionary adaptation. Formation of the eccDNA occurred in the absence of any repetitive DNA elements, probably using a micro-homology sequence of 8 nucleotides flanking the amplified sequence. We isolated the pXI2-6 eccDNA from an intermediate strain of the evolutionary adaptation process, sequenced it completely and showed that it confers high xylose fermentation capacity when it is transferred to a new strain. In this way, we have provided clear evidence that gene amplification can occur through generation of eccDNA without the presence of flanking repetitive sequences and can serve as a rapid means of adaptation to selection pressure.  相似文献   

3.
Summary Asymmetric somatic hybrids were obtained between a chlorophyll-deficient mutant of Nicotiana sylvestris (V42) and a nitrate-reductase (NR)-deficient line of N. plumbaginifolia (cnx20 or Nia26), using each of the parents alternately as the irradiated donor. Irradiation doses applied ranged from 10 to 1,000 Gy of gamma-rays. Hybrid selection was based on complementation of NR deficiency with wild-type NR genes. To aid in the analysis of somatic hybrids, species-specific repetitive DNA sequences from N. plumbaginifolia (NPR9 and NPR18) were cloned. NPR18 is a dispersed repetitive sequence occupying about 0.4% of the N. plumbaginifolia genome. In turn, NPR9, which is part of a highly repetitive DNA sequence, occupies approximately 3% of the genome. The species-specific plant DNA repeats, together with cytological analysis data, were used to assess the relative amount of the N. plumbaginifolia genome in the somatic hybrids. In fusion experiments using irradiated N. plumbaginifolia, an increase in irradiation dose prior to fusion led to a decrease in N. plumbaginifolia nuclear DNA content per hybrid genome. For some hybrid lines, an increase in the quantity of repetitive sequences was detected. Thus, hybrid lines 1NV/21, 100NV/7, 100NV/ 9, and 100NV/10 (where N. plumbaginifolia was the irradiated donor) were characterized by amplification of NPR9. In the reverse combination (where N. sylvestris was the irradiated donor), an increase in the copy number of NPR18 was determined for hybrid clones 1VC/2, 1VC/3, 100VC/2 and oct100/7. Possible reasons for the amplification of the repeated sequences are discussed.  相似文献   

4.
The enterobacterial repetitive intergenic consensus (ERIC)-PCR method was employed to generate genomic amplification products of Sinorhizobium meliloti strain 2011. Eleven distinctive PCR fragments obtained in PCR reactions by using the ERIC2 primer were cloned and their partial or complete nucleotide sequences established. DNA sequences that extended past the ERIC2 primer region were not conserved among the 11 PCR fragments and showed no sequence similarity to the enterobacterial ERIC consensus sequence. Thus, repetitive ERIC or ERIC-like sequences seem not to be an integral part of the S. meliloti genome. An amplification product of S. meliloti 2011 was identified which was present in S. meliloti strains but absent in other rhizobial species. Based on the nucleotide sequence information, a pair of PCR primers was designed and used for PCR amplification of sequences of S. meliloti laboratory strains 2011, L5–30, AK631 and 102F34. Nucleotide sequence analysis of the amplification products revealed a 100% DNA sequence conservation. Database searches showed that the DNA fragment putatively encodes the C-terminal part of a protein displaying similarity to 2-hydroxyacid dehydrogenases of various organisms. The newly designed PCR primers should be useful for the rapid identification of S. meliloti isolates. Received: 17 February 1999 / Accepted: 9 April 1999  相似文献   

5.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

6.
DNA sequence organization in the genome of Nicotiana tabacum   总被引:2,自引:2,他引:0  
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

7.
 The recent recovery of maize (Zea mays L.) single-chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses has provided novel source materials for the potential isolation of maize chromosome-specific sequences for use in genetic mapping and gene cloning. We report here the application of a technique, known as representational difference analysis (RDA), to selectively isolate maize sequences from a maize chromosome-3 addition line of oat. DNA fragments from the addition line and from the oat parent were prepared using BamHI digestion and primer ligation followed by PCR amplification. A subtractive hybridization technique using an excess of the oat parental DNA was employed to reduce the availability for amplification of DNA fragments from the addition lines that were in common with the ones from the oat parental line. After three rounds of hybridization and amplification, the resulting DNA fragments were cloned into a plasmid vector. A DNA library containing 400 clones was constructed by this method. In a test of 18 clones selected at random from this library, four (22%) detected maize-specific repetitive DNA sequences and nine (50%) showed strong hybridization to genomic DNA of maize but weak hybridization to genomic DNA of oat. Among these latter nine clones, three detected low-copy DNA sequences and two of them detected DNA sequences specific to chromosome 3 of maize, the chromosome retained in the source maize addition line of oat. The other eight out of the 13 clones that had strong hybridization to maize DNA detected repetitive DNA sequences or high-copy number sequences present on most or all maize chromosomes. We estimate that the maize DNA sequences were enriched from about 1.8% to over 72% of the total DNA by this procedure. Most of the isolated DNA fragments detected multiple or repeated DNA sequences in maize, indicating that the major part of the maize genome consists of repetitive DNA sequences that do not cross-hybridize to oat genomic sequences. Received: 18 November 1997 / Accepted: 12 March 1998  相似文献   

8.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

9.
Genome-specific repetitive sequences in the genus Oryza   总被引:1,自引:0,他引:1  
Summary Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species divergence. In this paper, we report the isolation and characterization of four genome-type specific repetitive DNA sequences in the genus Oryza. Sequences specific to the AA, CC, EE or FF genome types are described. These genome-type specific repetitive sequences will be useful in classifying unknown species of wild or domestic rice, and in studying genome evolution at the molecular level. Using an AA genome-specific repetitive DNA sequence (pOs48) as a hybridization probe, considerable differences in its copy number were found among different varieties of Asian-cultivated rice (O. sativa) and other related species within the AA genome type. Thus, the relationship among some of the members of AA genome type can be deduced based on the degree of DNA sequence similarity of this repetitive sequence.  相似文献   

10.
The genomic organization of two parasitic wasps was analyzed by DNA reassociation. Cot curves revealed a pattern with three types of components. A highly repetitive DNA, accounting for 15 to 25% of the genome, was identified as satellite DNA. The moderately repetitive DNA corresponds to 26 to 42% of the genome in both species, and shows large variations in complexity, repetitive frequency and a number of sub-components between males and females. These variations are seen as resulting from DNA amplification during somatic and sexual differentiation. Dot blot analyses show that such DNA amplifications concern several types of structural and regulatory genes. The presence of repeated mobile elements was studied by the Roninson method to compare the repeated sequence patterns of Diadromus pulchellus and Eupelmus vuilleti with those of Drosophila melanogaster. The occurrence and organization of mobile elements in these Hymenoptera differ from those of the neighboring order of Diptera. The repetitive and unique components define very large genomes (1 to 3 × 109 base pairs). The genomic organization in Parasitica appears to be an extreme drosophilan type. We propose that the germinal genome of these parasitic wasps is primarily composed of satellite DNA blocks and very long stretches of unique sequences, separated by a few repeated and/or variously deleted, interspersed elements of each mobile element family.  相似文献   

11.
The synchronous macroplasmodial growth phase of the slime mould Physarum polycephalum was used to study the in vivo replication of large chromosomal DNA segments. Newly replicated DNA was isolated at various points in S-phase by its preferential association with the nuclear matrix. This DNA was then used to probe cosmid clones of the Physarum genome. The results indicate that certain dispersed repetitive sequences in the genome are coordinately replicated. The observed pattern of replication may be due either to the presence of a replication origin within each repetitive sequence or to the systematic arrangement of these sequences around a replication origin. The latter appears more likely since the repetitive sequences are probably not randomly scattered within the genome.  相似文献   

12.
Summary The first step of differentiation in the root segments ofAllium cepa containing metaxylem cells in different stages of differentiation were studied by DNA reassociation curves and compared to meristem cell extracted DNA. Upon sonication of DNA samples to about 400 base pairs, the reassociation profiles of the heat denatured DNA, were spectrophotometrically followed at two different concentrations. The kinetic complexities,i.e., the number of base pairs per haploid genome of a given sequence and its redundancy were calculated. Differences were found at the level of highly and medium repetitive sequences, thus demonstrating that some DNA reassociation classes may undergo amplification during root development.  相似文献   

13.
The interspersion period of repetitive and unique sequences was analyzed by two different methods, electron microscopy and agarose gel electrophoresis, for four Amphibian species with different nuclear DNA content, namely the Anura Xenopus laevis (3 pg DNA per haploid genome) and Bufo bufo (7 pg) and the Urodela Triturus cristatus (23 pg) and Necturus maculosus (52 pg). Within each of the two subclasses it has been found that interspecific differences, in DNA content, due to variations in the amount of repetitive sequences, do not involve variations in length of the interspersed repetitive sequences. They remain about 380 base pairs. Furthermore, the unique sequences length has been found to be shorter in Bufo (760 base pairs) than in Xenopus (1600) and in Necturus (880) than in Triturus (1340). A study of the interspersion period has shown that the great difference in DNA content between Anura and Urodela, which had been previously shown not to have involved changes in the relative amounts of the various sequence classes, does not involve changes in the interspersion period.  相似文献   

14.
The pattern of genome organization of Zea mays has been analyzed, and the relationship of maize to possible progenitor species assessed by DNADNA hybridization. Reassociation of 470 and 1,350 bp fragments of maize DNA to various C0t values demonstrates that the genome is composed of 3 major kinetic classes: highly repetitive, mid-repetitive, and unique. Mini-C0t curves of the repetitive sequences at short fragment length indicate that the highly repetitive sequence class is 20% of the genome and is present at an average reiteration frequency of 800,000 copies; the mid-repetitive sequence class is 40% of the genome and is present at an average reiteration frequency of 1,000 copies. Thermal denaturation studies show that the highly repetitive sequences are 12% divergent and mid-repetitive sequences are 6% divergent. Most of the genome is organized in two interspersion patterns. One, approximately one-third of the genome, is composed of unique sequences of average length 2,100 bp interspersed with mid-repetitive sequences; the other, also one-third of the genome, is mid-repetitive sequences interspersed with highly repetitive sequences. The repetitive sequences are 500 to 1,000 bp by electron microscopic measurement. The remaining third of the genome is unique sequences farther than 5,000 bp from a palindromic or repetitive sequence. Hybridization of maize DNA from Midwestern Dent to popcorn and related grasses indicates that both the unique and repetitive sequence elements have diverged. Teosinte and popcorn are approximately equally divergent from Midwestern Dent whereas Tripsacum is much more divergent. The divergence times calculated from the depression of Tm in heterologous duplexes indicate that the divergence within Zea mays and between maize and near relatives is at least an order of magnitude greater than expected. This high degree of divergence may reflect the pressures of domestication of maize.  相似文献   

15.
Systematic investigations on the occurrence of differential DNA replication in carrot cultures, expressed at the total genome level, were performed. The genome of Daucus carota L. could be characterized by a pattern of repetitive BstNI fragments that was independent of tissue specificity or cultivar differences. Characterization of the genomic DNA of the secondary phloem of carrot roots, in comparison to the DNA of the induced primary cultures at different growth phases, revealed dramatic differences in the copy number of the repetitive fragments. Highly proliferative tissue showed extensive reduction in the proportion of repetitive sequences in the genome in all of the 37 investigated variants. In contrast, during subsequent transition to stationary growth the repetitive fragments re-amplified. The results suggest that the quantitative genome organisation was involved in the regulation of the growth potential of cells. A hypothesis is discussed suggesting a determining influence of the observed differential DNA replication on cell-cycle rates and the cell program of proliferative tissue by structural and positioning effects on DNA loops. To study the causality of somaclonal variation, research on the relationship between physiological genome variability and the induction of heritable changes is recommended.  相似文献   

16.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

17.
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization of the genome of interest. Here, we report the isolation and the molecular analysis and methylation status of a novel tandemly organized repetitive DNA sequence from the genome of Poncirus trifoliata. Digestion of P. trifoliata DNA with Afa I produced a prominent fragment of approximately 400 bp. Southern blotting analysis of genomic DNA digested with the same enzyme revealed a ladder composed of DNA fragments that are multimers of the 400-bp Afa I band, indicating that the repetitive DNA is arrayed in tandem. This suggests that Afa I isolated a novel satellite that we have called Poncirus trifoliata satellite DNA 400 (PN400). This satellite composes 25% of the genome and it is also present in lemon, sour orange and kumquat. Analysis of the methylation status demonstrated that the cytosines in CCGG sequences in this satellite were methylated.  相似文献   

18.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   

19.
The presence of repetitive DNA sequences viz., short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP), in the cyanobacterial genome were used to generate a PCR-based fingerprint pattern of nine cyanobacterial cultures (both stress tolerant and non-tolerant), belonging to the genus Westiellopsis. By this method it was possible to generate distinguishing fingerprint patterns for all the isolates and cluster isolates with similar stress tolerance properties. This study reveals the utility of repetitive DNA sequences in the cyanobacterial genome, for differentiation of Westiellopsis cultures and clustering strains that posses similar stress tolerance properties.  相似文献   

20.
Three clones of dispersed repetitive sequences (MCS-26a, JA-5and JB-7) were isolated from a library of PCR products amplifiedfrom Citrus DNA using primers complementary to the minisatellitecore sequences. Distribution of these repetitive sequences inthe genomic DNA was highly variable among members of the Rutaceaefamily studied here. MCS-26a was specifically amplified in thesubfamily Aurantioideae, but not in other subfamilies of theRutaceae. Different levels of JA-5 amplification were observedamong genera in the subfamily Aurantioideae. JB-7 was widelydetected throughout the Rutaceae. These data suggest that thethree repeated sequences analysed in this study were amplifiedat different stages in the evolution of Rutaceae and that theyare useful for systematic studies of the Rutaceae. In addition,the repetitive sequences displayed a high level of restrictionfragment length polymorphism (RFLP) among Citrus species andtheir relatives, suggesting that they serve as hot spots forchanges in the genome after amplification. Copyright 2001 Annalsof Botany Company Citrus, Rutaceae, repeated sequences, DNA fingerprinting, RFLP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号