首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

2.
High temperature (HT) stress is one of the most important environmental stimuli, negatively affecting plant survival and crop yield. Basal and acquired thermotolerance (ATT) are two components of plant response to HT, the mechanisms controlling them are not completely known yet. Basal thermotolerance was evaluated in a collection of 47 Triticum turgidum and Triticum durum genotypes, by the cell membrane stability (CMS) test, observing high variability. T. turgidum accessions exhibited the highest CMS values corresponding to higher thermotolerance, while T. durum cultivars (cvs) exhibited lower CMS values. The heat shock response is characterized by the synthesis of heat shock proteins (HSPs), and variation in HSPs production may be related to variation in ATT. The expression of HSP genes (coding cytoplasmic and plastidial small HSPs and two members of HSP70 family), previously hypothesized to be correlated with thermotolerance, was evaluated in thermotolerant and thermosensitive genotypes grown in the field, in control and HT conditions. The results obtained suggest that the genes coding for the two members of HSP70 family, may be responsible for basal thermotolerance. The overall results suggest that wild genotypes may possess a yet undisclosed variability for alleles involved in thermotolerance.  相似文献   

3.
The toxicity and effects on protein synthesis of the phthalate esters diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) was studied in radish seedlings (Raphanus sativus cv. Kööpenhaminan tori). Phthalate esters are a class of commercially important compounds used mainly as plasticizers in high molecular-weight polymers such as many plastics. They can enter soil through various routes and can affect plant growth and development. First the effect of DEP and DEHP on the growth of radish seedlings was determined in an aqueous medium. It was found that DEP, but not DEHP, caused retardation of growth in radish. A further investigation on protein synthesis during DEP-stress was executed by in vivo protein labeling combined with two-dimensional gel electrophoresis (2D-PAGE). For comparisons with known stress-induced proteins a similar experiment was done with heat shock, and the induced heat shock proteins (HSPs) were compared with those of DEP-stress. The results showed that certain HSPs can be used as an indicator of DEP-stress, although the synthesis of most HSPs was not affected by DEP. DEP also elicited the synthesis of numerous proteins found only in DEP-treated roots. The toxic effect of phthalate esters and the roles of the induced proteins are discussed.  相似文献   

4.
Abstract The capacity to synthesize heat shock proteins (HSPs) during seed germination of sorghum (Sorghum bicolor) and pearl millet (Pennisetum americanum) has been examined. HSP synthesis is detectable in a thermotolerant genotype of sorghum during the first hour of imbibition of the seed under high temperature stress. A non-coordinate control of HSP synthesis during germination was revealed. Genotypic differences were manifest in the stage of germination at which the ability to synthesize HSPs was first apparent and this related to the thermosensitivity of that genotype.  相似文献   

5.
Structural adaptations to increased transport activities were investigated in the cells of vascular parenchyma at the site of the lateral root junction, in non-stressed plant roots. Typical transfer cells were differentiated in dicotyledonousHelianthus tuberosus and in two different genotypes ofH. annuus, the cv. IBH166 and a decorative form. In the representatives of monocotyledonous, no structural adaptations occurred in the roots ofHordeum vulgare but small and rare cell wall protuberances were found in xylem and phloem ofZea mays inbred line VIR17. Some degree of cell wall labyrinth differentiation was seen in xylem and typical transfer cells were found in phloem of the roots of the maize hybrid CE380. The capability of vascular parenchyma to differentiate transfer cells did not depend on species, genotype, or on the growing conditions withHelianthus. On the other hand, the development of the structural adaptations in monocotyledonous representatives depended on both the species and the genotype. This capability may be linked with the taxonomic and evolutionary position of plant species.  相似文献   

6.
Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts   总被引:1,自引:0,他引:1  
Etiolated barley (Hordeum vulgare L.) seedlings were treated with heat shock (HS). The heat treatment was conducted daily for 1 h at 40°C over 6 days and led to shortening of leaves and coleoptiles, an increase in the etioplast volume and prothylakoid length, and to a decrease in the size of paracrystalline prolamellar bodies (PLB). As a result of HS treatment, stimulation of carotenoid and protochlorophyllide (Pchlide) synthesis as well as an increase in the relative content of the Pchlide short-wavelength form (Pchlide630) were observed in the leaf tissue of seven-day-old seedlings 12 h after the last HS treatment. HS had no effect on the overall amount of Pchlide-oxidoreductase (POR) in leaves and PLB membranes and did not suppress the Pchlide photoreduction in vivo. PLB membranes, isolated from the HS-treated seedlings, possessed a higher Pchlide and carotenoid content as calculated on total protein basis. These membranes showed more intense protein fluorescence than PLB from untreated plants, whereas hydrophobicity of the microenvironment of the fluorescent amino-acid residues remained unchanged. Studies using pyrene (lipophilic fluorescent probe emitted in Pchlide and carotenoid absorption bands) showed that HS increases the fluidity of membrane lipids in PLB membranes and that the pigments accumulated in these membranes are located in the region of lipid–protein contact site. The results are discussed in relation to the adaptive role of protein–protein and pigment–protein–lipid interactions in etioplast membranes under stress.  相似文献   

7.
8.
9.
10.
Seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) were cultivated on board the Space Shuttle STS-95 mission and changes in the morphology and the cell wall properties of coleoptiles were analyzed. In space, rice coleoptiles showed a spontaneous (automorphic) curvature toward the caryopsis in the elongating region. The angle of automorphic curvature was larger in Koshihikari than in a gibberellin-deficient dwarf cultivar, Tan-ginbozu, and the angle gradually decreased during the growth of coleoptiles in both cultivars. The more quickly expanding convex side of the bending region of the rice coleoptiles showed a greater extensibility of the cell wall than the opposite side. There was a significant correlation between the angle of curvature and the difference in the cell wall extensibility between the convex and the concave sides. Both the levels of the cell wall polysaccharides per unit length of coleoptile and the ratio of high-molecular-mass polysaccharides in the hemicellulose fraction were lower in the convex side than the concave one. Also, the activity of (13),(14)--glucanases in the cell wall was higher in the convex side than the concave one. These results suggest that the uneven modifications of cell wall metabolism bring about the difference in the levels and the molecular size of the cell wall polysaccharides, thereby causing the difference in capacity of the cell wall to expand between the dorsal and the ventral sides, leading to the automorphic curvature of rice coleoptiles in space. The data also suggest the involvement of gibberellins in inducing the automorphic curvature under microgravity conditions.  相似文献   

11.
Clostridium botulinum type A cells, when challenged to elevated temperature (45°C), increased the expression of at least nine heat shock proteins (HSPs). Simultaneously with the induction of HSPs, changes in the synthesis rates of other cellular proteins were observed. A 40-kDa stress protein was induced and its synthesis rate was enhanced when the cells were shifted to 45°C. Using heterologous antibodies raised against E. coli DnaJ heat shock proteins, the 40-kDa stress protein of C. botulinum type A has been identified as a DnaJ-like chaperone. The DnaJ chaperone might be involved in translocation of the neurotoxin and other cellular proteins across the cell membrane, repair of damaged proteins, and organism survival inside the host. This is the first report of the existence of a DnaJ-like chaperone in this organism.  相似文献   

12.
Accumulation and ethylene-dependent translocation of free polyamines was studied in various organs, the phloem and xylem exudates of common ice plants (Mesembryanthemum crystallinum L.). Under normal conditions (23–25°C), spermidine predominated among polyamines. Cadaverine was found in old leaves, stems, and, in large quantities, in roots. The heat shock treatment (HS; 47°C, 2 h) of intact plant shoots induced intense evolution of ethylene from leaves but reduced the leaf content of polyamines. Under these conditions, the concentration of polyamines in roots, particularly of cadaverine, increased many times. The HS treatment of roots (40°C, 2 h) induced translocation of cadaverine to stems and putrescine to leaves. An enhanced polyamine content after HS treatment was also found in the xylem and phloem exudates. The exposure of detached leaves to ethylene led to a reduction in their putrescine and spermidine and accumulation of cadaverine, which implies the ethylene-dependent formation of cadaverine and a possible relation between the HS-induced translocation of this diamine to roots and the transient ethylene evolution by leaves. To validate this hypothesis, we compared the ethylene evolution rate and interorgan partitioning of cadaverine and other polyamines for two lines of Arabidopsis thaliana: the wild type (Col-0) and ein4 mutant with impaired ethylene reception. In plants grown in light at 20–21°C, the rate of ethylene evolution by rosetted leaves was higher in the mutant than in the wild type. The content of putrescine and spermidine was reduced in mutant leaves, whereas cadaverine concentration increased almost threefold compared with the wild type. In roots, cadaverine was found only in the wild type and not in the mutant line. Our data indicate the ethylene-dependent formation of cadaverine in leaves and possible involvement of cadaverine and ethylene in the long-distance translocation of stress (HS) signal in plants.  相似文献   

13.
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first heat-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response.  相似文献   

14.
15.
16.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

17.
A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat‐stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat‐induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat‐induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered.  相似文献   

18.
Lipid composition of whole roots of wheat (Triticum vulgare Vill. cv. Svenno Spring Wheat) and oat (Avena sativa L. cv. Brighton) and of cell wall fractions, mitochondrial fractions and microsomal fractions of these roots were studied. Lipid composition depended upon the level of mineral nutrition. In wheat total phospholipids, phosphatidyl choline and sulfolipid content was highest in the roots grown at the higher salt concentration, while the reverse was true for oat roots. In both species glycolipid and sterol content was lower in the high salt roots, at the same time as higher proportions of them were built into the microsomal fraction. Phosphatidyl choline content of the wheat root membrane fractions increased with the salt level, while the opposite occurred in the oat roots. The phosphatidyl choline content may be correlated with the (Ca2+, Mg2+)-stimulated ATPase activity.  相似文献   

19.
The effect of silicon on organ growth and its mechanisms of action were studied in rice (Oryza sativa L. cv. Koshihikari), oat (Avena sativa L. cv. Victory), and wheat (Triticum aestivum L. cv. Daichino-Minori) seedlings grown in the dark. Applying silicon in the form of silicic acid to these seedlings via culture solution resulted in growth promotion of third (rice) or second (oat and wheat) leaves. The optimal concentration of silicon was 5–10 mM. No growth promotion was observed in early organs, such as coleoptiles or first leaves. In silicon-treated rice third leaves, the epidermal cell length increased, especially in the basal regions, without any effect on the number of cells, showing that silicon promoted cell elongation but not cell division. Silicon also increased the cell wall extensibility significantly in the basal regions of rice third leaves. These results indicate that silicon stimulates growth of rice and some other Poaceae leaves by increasing cell wall extensibility. Received: July 31, 2001 / Accepted: September 18, 2001  相似文献   

20.
The effect of salicylic acid on barley response to water deficit   总被引:2,自引:0,他引:2  
The effect of a moderate (PEG −0.75 MPa) and severe (PEG −1.5 MPa) water deficit on SA content in leaves and roots as well as the effect of pre-treatment with SA on reaction to water stress were evaluated in two barley genotypes — the modern cv. Maresi and a wild form of Hordeum spontaneum. Water deficit increased SA content in roots, whereas SA content in leaves did not change. The level of SA in the roots of control plants was about twofold higher in ‘Maresi’ than in H. spontaneum. After 6 hours of a moderate stress the level of SA increased about twofold in H. spontaneum and about two and a half-fold in ‘Maresi’. Under severe stress conditions the level of SA increased about twofold in the both genotypes, but not before 24 hrs of the stress. Plant treatment with SA before stress reduced a damaging action of water deficit on cell membrane in leaves. A protective effect was more noticeable in H. spontaneum than in ‘Maresi’. SA treatment increased ABA content in the leaves of the studied genotypes. An increase of proline level was observed only in H. spontaneum. The obtained results suggest that ABA and proline can contribute to the development of antistress reactions induced by SA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号