首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The anthers are tetrasporangiate. The anther wall comprises epidermis, fibrous endothecium, middle layer and tapetal layer. The tapetum is of the Glandular type and its cells remain uninucleate. Meiosis in pollen mother cells is normal and simultaneous cytokinesis leads to the formation of tetrahedral and decussate microspore tetrads. The pollen grains are shed at 2-celled stage. The ovule is campylotropous, bitegmic and crassinucellate. Meiosis in megaspore mother cell results in the formation of linear or occasionally T-shaped megaspore tetrad. The chalazal megaspore develops into Monosporic Polygonum type of embryo sac. Endosperm development is of the Nuclear type.  相似文献   

2.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

3.
掌叶大黄胚珠的发育及胼胝质的变化   总被引:1,自引:0,他引:1  
  相似文献   

4.
The study of reproductive organs and their developmental stages during sporogenesis and gametogenesis is an important step for basic and applied sciences. In this order and to develop knowledge about Capsicum annuum L. (Solanaceae), flower buds in different developmental stages were investigated by light and scanning electron microscopy. The bell pepper bisexual flowers have homoantherous stamens with tetrasporangiate anthers. The pattern of anther wall formation is basic type, while previously described as dicotyledonous type. Microspore mother cells meiosis has simultaneous cytokinesis and tetrads are tetrahedral. Two-celled mature pollen grains are tricolporate with scabrate ornamentation. The gynoecium is bicarpellate and epigynous, with hemianatropous, unitegmic and tenuinucellate ovules. After megaspore mother cell meiosis, cytokinesis is simultaneous. The chalazal megaspore of the linear tetrad functions as the functional megaspore. Embryo sac development is of monosporic Polygonum type and consists of seven cells. We give the first reproductive calendar for the species that allows prognostication of gametogenesis on the basis of sporophytic parameters related to reproductive organ development and floral bud form and size. Some of these developmental characteristics should be useful for comparative studies and investigation of phylogenetic relationships within Solanaceae family.  相似文献   

5.
Wiggins , Ira L. (Stanford U., Stanford, Calif.) Development of the ovule and megagametophyte in Saxifraga hieracifolia. Amer. Jour. Bot. 46(10): 692–697. Illus. 1059.—Buds of Saxifraga hieracifolia collected in the vicinity of Point Barrow, Alaska, fixed, sectioned, and stained by standard methods, revealed that the archesporial cell in the ovule of this species is hypodermal and gives rise to the megaspore mother cell and a small number of parietal cells. Occasionally 2 megaspore mother cells occur within an ovule. Meiosis in the megaspore mother cell produces a linear tetrad of megaspores, the chalazal one of which normally gives rise to a monosporic, Polygonum-type megagametophyte. The polar nuclei fuse near the chalazal end of the megagametophyte and the antipodal cells disintegrate prior to fertilization. A distinct filiform apparatus and a marked lateral “spur” develop on each synergid. Vacuolation in the egg cell and in the synergids follows the usual pattern. Only a single integument surrounds the nucellus.  相似文献   

6.
This paper reports the studies of overall embryology of Glycyrrhiza uralensis Fisch. Development of the anther wall follows the dicotyledonous type. The cytokinesis of the microspore mother cell in meiosis is of simultaneous type. The arrangement of microspores in tetrad is tetrahedral, isobilateral and decussate. Microspores have various types of abortive to development. Mature pollen grain is of the 2-celled type. The ovule is bitegminous, crassinucellate and campylotropous. The megaspore mother cell gives rise to unequal dyad and then linear tetrad. The chalazal megaspore, the second or the third megaspore towards the micropylar end are functional megaspore. The development of the embryo sac conforms to the Polygonum type. Mature embryo sac has various types of variation. The fertilization belongs to the premitotic type of syngamy. The development of most embryoes belongs to the Onagrad type. The development of the endosperm belongs to the nuclear type and the endosperm near the chalazal end develops into haustorium.  相似文献   

7.
Summary

Bupleurum dianthifolium Guss., an endemic species of the small island of Marettimo just West of Sicily, is one of the few constantly hermaphroditic Umbelliferae. It is markedly protandrous. Its chromosome number is n = 8.

The flower develops acropetally from the petals to the stamens, and the carpels; the development of the sepals stops very soon.

The microspores individualise simultaneously and the reproductive nucleus divides while the pollen grain is still in the anther; the tapetum is of the secretory type.

The two carpels fuse at their tips and the ovary is divided into two chambers by the carpophore which develops from the bottom central part of the cavity. Two ovules start developing in each chamber; the upper ones cease their development while the lower ones grow into pendulous, anatropous ovules with only one integument. The ovule is tenuinucellate. The archesporium is unicellular. No parietal cell is formed.

A group of cells trophic in function is present at the basis of the embryo sac, and disappears after fertilisation has occurred. The female gametophyte is of the normal type, monosporic, 8-nucleated, with the antipodal cells sunken in the chalazal nutritive apparatus and disappearing before the polar nuclei fuse. The albumen is nuclear.

A fibrillary body has been observed in the cytoplasm of the megaspore mother-cell. This body after the meiosis remains as an exclusive property of the chalazal megaspore, i. e. the spore that will give the embryo sac. This body can still be seen in the binucleate gametophyte, and disappears during the 4-nucleated gametophyte stage.  相似文献   

8.
New data on the development of polarity in the ovules during megasporogenesis and early stages of embryo sac development inOenothera-hybrids are presented. It is confirmed that allOe. hookeri-hybrids show a strong tendency to form heteropolar tetrads, with the micropylar megaspore developing into an embryo sac. This preference is seen in the delay of the second meiotic division on the chalazal side, the absence of callose in the lateral wall of the micropylar megaspore, and the accumulation of starch in this megaspore. However, homopolar tetrads, chalazal preference, and ovules with two developing embryo sacs are also observed with considerable frequency. Quantitative data on the frequency of the different developmental types are compared with earlier genetic results about competition in the haplophase. There is sufficiently good agreement to support the hypothesis ofRenner that there is a correlation between the developmental processes in the megaspore tetrad and the genetic phenomena of competition in the haplophase.  相似文献   

9.
香果树为茜草科香果树属单种属植物,是我国特种古老珍稀濒危树种。对香果树大小孢子发生及胚胎发育过程进行了细胞学观察,观察结果表明:香果树子房两室,中轴胎座,胚珠多数,倒生,单珠被,厚珠心。大孢子四分体排列成线性,靠近合点端的大孢子发育成功能大孢子,珠孔端的3个退化,胚囊发育为蓼型,典型的七胞八核胚囊。雄蕊浅黄色,蝶形花粉囊,小孢子四分体成四面体型,成熟的花粉为二胞花粉。胚胎发育过程经历了合子、原胚、球形胚、心形胚、鱼雷胚5个阶段,种子成熟时,胚发育未完全成熟。本文在香果树大小孢子发生发育切片的观察中未发现异常现象,胚胎发育停留在鱼雷胚时期。  相似文献   

10.
Browne , Edward T., Jr . (U. of Kentucky, Lexington.) Morphological studies in Aletris. I. Development of the ovule, megaspores and megagametophyte of A. aurea and their connection with the systematics of the genus. Amer. Jour. Bot. 48(2): 143–147. Illus. 1961.—Development in a North American species of this variously classified genus has shown great similarity with the development in several genera of Hutchinson's Liliaceae-Narthecieae: Pleea, Tofieldia, Nanhecium and ∗∗∗Metaparthecium. The ovules are anatropous, bitegmic, crassinucellate and arranged in 4 rows in each locule of the tricarpellate pistil. There is a hypostase and an obturator. The primary archesporial cell is hypodermal. This undergoes a division to form a wall cell and the megaspore parent cell (MPC). The megaspores usually have a linear arrangement although occasionally a T-shaped tetrad may be formed. Most frequently the chalazal megaspore functions, but rarely the one adjacent to it may enlarge instead. Megagametophyte development is of the Polygonum type. A characteristic narrowed chalazal constriction is formed during the development of the megagametophyte. It is recommended on the basis of this information that Aletris be classified with the genera of the Liliaceae-Narthecieae.  相似文献   

11.
矮沙冬青雌配子体及胚胎发育研究   总被引:5,自引:0,他引:5  
周江菊  唐源江  廖景平   《广西植物》2006,26(5):561-564
矮沙冬青子房单心皮1室,边缘胎座,弯生胚珠,胚珠具双珠被、厚珠心。大孢子孢原细胞发生于珠心表皮下,大孢子母细胞减数分裂形成直线排列的四分体,合点端大孢子具功能,并按蓼型胚囊发育,雌配子体成熟于4月中旬。双受精后,胚乳发育为核型。在矮沙冬青大孢子发生、雌配子体和胚胎发育过程中未发现异常现象,因此认为矮沙冬青濒危不存在雌性生殖结构与发育过程异常的内在因素。  相似文献   

12.
黄衡宇  龙华  易婷婷  李鹂 《植物研究》2009,29(6):665-673
对獐牙菜大孢子发生、雌配子体形成、受精、胚及胚乳发育过程进行了研究。主要结果如下:子房2心皮,1室,4列胚珠,侧膜胎座;薄珠心,单珠被,倒弯生胚珠。大孢子母细胞减数分裂形成4个大孢子直线形排列,合点端的大孢子具功能,胚囊发育为蓼型。3个反足细胞宿存,每个细胞均多核和异常膨大,反足吸器明显,并在胚乳之外形成染色较深的类似“外胚乳”的结构。珠孔受精,受精作用属于有丝分裂前类型。胚乳发育为核型;胚胎发育为茄型。果实成熟时,种子发育至球形胚阶段。反足细胞在龙胆科一些短命植物中的宿存与分裂具有重要的生殖适应与进化意义。  相似文献   

13.
北柴胡大小孢子发生和雌雄配子体发育的研究   总被引:1,自引:0,他引:1  
用石蜡切片法对北柴胡的大、小孢子发生和雌、雄配子体发育过程进行观察研究.结果显示,北柴胡的胚珠为倒生型,单珠被,薄珠心.孢原细胞不经分裂直接发育成大孢子母细胞;四分体线性,多数情况下合点端的大孢子为功能大孢子,少数情况下亚合点端的大孢子也可发育为功能大孢子,蓼型胚囊;八核胚囊时期,珠心基部和两侧的一些珠心细胞保持自己的细胞质和形状,留存较久,成为珠心座细胞,珠被内表皮细胞发育为珠被绒毡层;花药壁发育类型为基本型,绒毡层为腺质绒毡层.小孢子母细胞减数分裂的胞质分裂为同时型,产生正四面体型四分体.成熟花粉为3细胞型.  相似文献   

14.
The nucellus of Machaeranthera pattersonii (A. Gray) Greene (Aster pattersonii A. Gray) contains only one megaspore mother cell, and the female gametophyte develops from the chalazal megaspore of a row of four, thus conforming to the Polygonum type of development. These observations are contrary to the older work of Palm. Three nuclear divisions produce the typical eight nuclei with the egg apparatus, primary endosperm cell with two polar nuclei, and two antipodal cells, the micropylar one containing two nuclei. Usually no more antipodal cells are formed, although there is further nuclear division, apparently followed by nuclear fusion. The antipodal cells remain about the same size without forming an antipodal haustorium. Cell division accompanies the first division of the primary endosperm nucleus. The early stages of the embryo resemble those of other Compositae. Machaeranthera tanacetifolia (HBK) Nees also shows the Polygonum type of development of the female gametophyte. It is suggested that Palm may have been working on some species of Erigeron that had been wrongly identified, which would account for the difference in observations.  相似文献   

15.
The development of the ovule, megaspore and megagametophyte in Saxifraga fortunei var. partita (Makino) Nakai was observed. The ovule is anatropous, bitegmic, and crassinucellate. Both integuments originate from the epidermis. The archesporium is considered to be multicellular. The primary sporogenous cell functions as the megaspore mother cell which forms a T-shaped tetrad. The chalazal member of the megaspore tetrad is functional and develops into a Polygonum-type embryo sac. In the pyriform synergids the filiform apparatus is observed, but any hook or indentations could not be recognized. The antipodal cells are detectable until the Helobial endosperm undergoes several nuclear divisions. Secondary multiplication of the nuclei or the cells of the antipodals could not be observed.  相似文献   

16.
The immature megaspore mother cell of Ginkgo biloba is essentially spherical and is surrounded by a thick, complex wall. A large nucleus occupies the central region of the cell, and the organelles appear to be randomly arranged in the cytoplasm. With approaching maturity and the onset of meiosis, the cell elongates in the direction of the ovular axis. An extensive system of ER develops at the micropylar pole of the cell during elongation, and the plastids and mitochondria migrate to the opposite or chalazal pole. The micropylar end of the mature megaspore mother cell is usually devoid of plastids and mitochondria, but these organelles are densely packed in the chalazal end of the cell below the nucleus. The dictyosomes and dense spherosome-like bodies do not show such polarity in their distribution. At meiosis I plastids and mitochondria are, as a rule, restricted to the chalazal dyad cell that is destined to produce the functional megaspore. The wall of the megaspore mother cell consists of a middle lamella which is irregularly thickened, an outer wall layer resembling the walls of the surrounding nutritive cells, and an inner layer resembling the middle lamella in appearance.  相似文献   

17.
The development of the female gametophyte in Hydrobryum griffithiiis of the Apinagia type. The chalazal megaspore nucleus of thetwo-nucleate embryo sac completely degenerates, and only themicropylar megaspore nucleus contributes to the four nucleipresent in the organized embryo sac. The female gametophyteconsists of two synergids, an egg and a haploid central cell.The latter degenerates before the entry of the pollen tube andthere is only syngamy. The nucellar cells below the embryo sacorganize into a nucellar plasmodium.  相似文献   

18.
The embryology ofCrocus thomasii is described. Male meiosis is of simultaneous type, and gives rise to starchy microspores which develop into lipoid pollen grains; these are two-celled and show a spinulate acolpate, abaculate exine lacking apertures. The tapetum is glandular and its cells become bi- or sometimes multinucleate. The ovule is anatropous and bitegmic; the inner integument forms the micropyle. Megasporogenesis is heteropolar with starch accumulation in the functional chalazal megaspore. Embryo sac development conforms to thePolygonum type. The endosperm development is nuclear. The embryo develops according to the Caryophyllad type. In the ripe seed it is differentiated and enveloped by a starchy cellular endosperm. The embryological characters observed strongly favour a close relation betweenC. thomasii andC. sativus.  相似文献   

19.
The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.  相似文献   

20.
Calypso bulbosa is a terrestrial orchid that grows in north temperate regions. Like many orchids, the Calypso has ovules that are not fully developed at anthesis. After pollination, the ovule primordia divide several times to produce a nucellar filament which consists of five to six cells. The subterminal cell of the nucellar filament enlarges to become the archesporial cell. Through further enlargement and elongation, the archesporial cell becomes the megasporocyte. An unequal dyad results from the first meiotic division. A triad of one active chalazal megaspore and two inactive micropylar megaspores are the end products of meiotic division. Callose is present in the cell wall of the megaspore destined to degenerate. In the mature embryo sac the number of nuclei is reduced to six when the chalazal nuclei fail to divide after the first mitotic division. The chalazal nuclei join the polar nucleus and the male nucleus near the center of the embryo sac subsequent to fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号