首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.

Background and Aims

Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.

Methods

To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.

Key Results

The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.

Conclusions

Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.  相似文献   

3.
Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.  相似文献   

4.
Recent environmental issues have increased the demand for woody biomass as a renewable resource for industry and energy. For a stable supply of woody biomass, it is critical to decrease the effects of abiotic stresses, such as drought and salinity, which hinder plant growth. For the goal to develop practical stress-tolerant trees, we generated transgenic poplar plants (P. tremula × tremuloides), in which a key Arabidopsis regulatory factor involved in stress responses, SNF1-related protein kinase 2C (AtSRK2C), or galactinol synthase 2 (AtGolS2), was overexpressed. Both types of transgenic poplar plants displayed higher tolerance to abiotic stresses, in comparison with nontransgenic plants, indicating that AtSRK2C and AtGolS2 can function in the abiotic stress response pathway of poplar. We also examined the expression profiles of ten poplar genes putatively homologous to well-known Arabidopsis stress response genes and found that several of the poplar genes showed different responses to abiotic stress from their Arabidopsis counterparts. Whereas the overexpression of AtSRK2C in transgenic Arabidopsis plants was reported to upregulate the expression of endogenous genes, the overexpression of AtSRK2C or AtGolS2 in transgenic poplar did not. Taken together, our findings suggest that the details of the underlying molecular mechanisms of the abiotic stress response may differ, but that the key regulatory factors in Arabidopsis and poplar have common features and are effective molecular targets for further breeding to enhance abiotic stress tolerance in poplar.  相似文献   

5.
Wind disturbance as a green method can effectively prevent the overgrowth of tomato seedlings, and its mechanism may be related to root system mechanics. This study characterized the biophysical mechanical properties of taproot and lateral roots of tomato seedlings at five seedling ages and seedling substrates with three different moisture content. The corresponding root system-substrate finite element (FE) model was then developed and validated. The study showed that seedling age significantly affected the biomechanical properties of the taproot and lateral roots of the seedlings and that moisture content significantly affected the biomechanical properties of the seedling substrate (p < 0.05). The established FE model was sensitive to wind speed, substrate moisture content, strong seedling index, and seedling age and was robust. The multiple linear regression equations obtained could predict the maximum stress and strain of the root system of tomato seedlings in the wind field. The strong seedling index had the greatest impact on the biomechanical response of the seedling root system during wind disturbance, followed by wind speed. In contrast, seedling age had no significant effect on the biomechanical response of the root system during wind disturbance. In the simulation, no mechanical damage was observed on the tissue of the seedling root system, but there were some strain behaviors. Based on the plant stress resistance, wind disturbance may affect the growth and development of the root system in the later growth stage. In this study, finite element and statistical analysis methods were combined to provide an effective approach for in-depth analysis of the biomechanical mechanisms of wind disturbances that inhibit tomato seedlings’ growth from the root system’s perspective.  相似文献   

6.
BACKGROUND AND AIMS: Plant anchorage is governed by complex, finely regulated mechanisms that occur at a morphological, architectural and anatomical level. Spanish broom (Spartium junceum) is a woody plant frequently found on slopes--a condition that affects plant anchorage. This plant grows throughout the Mediterranean area where it plays an important role in preventing landslides. Spanish broom seedlings respond promptly to slope by altering stem and root morphology. The aim of this study was to investigate the mechanisms whereby the root system of Spanish broom seedlings adapts to ensure anchorage to the ground. METHODS: Seedlings were grown in tilted and untilted pots under controlled conditions. The root apparatus was removed at different times of growth and subjected to morphological, biomechanical and molecular analyses. KEY RESULTS: In slope-grown seedlings, changes in root system morphology, pulling strength and chemical lignin content, all features related to plant anchorage in the soil, were related to seedling age. cDNA-AFLP analysis revealed changes in the expression of several genes in root systems of slope-grown plants. BLAST analysis showed that some differentially expressed genes are homologues of genes induced by environmental stresses in other plant species, and/or are involved in the production of strengthening materials. CONCLUSION: Plants use various mechanisms/strategies to respond to slope depending on their developmental stage.  相似文献   

7.
Root Caps and Rhizosphere   总被引:15,自引:0,他引:15  
In this paper we discuss recent work on the physiological, molecular, and mechanical mechanisms that underlie the capacity of root caps to modulate the properties of the rhizosphere and thereby foster plant growth and development. The root cap initially defines the rhizosphere by its direction of growth, which in turn occurs in response to gradients in soil conditions and gravity. The ability of the root cap to modulate its environment is largely a result of the release of exudates and border cells, and so provides a potential method to engineer the rhizosphere. Factors affecting the release of border cells from the outer surface of the root cap, and function of these cells and their exudates in the rhizosphere, are considered in detail. Release of border cells into the rhizosphere depends on soil matric potential and mechanical impedance, in addition to a host of other environmental conditions. There is good evidence of unidentified feedback signals between border cells and the root cap meristem, and some potential mechanisms are discussed. Root border cells play a significant mechanical role in decreasing frictional resistance to root penetration, and a conceptual model for this function is discussed. Root and border cell exudates influence specific interactions between plant hosts and soil organisms, including pathogenic fungi. The area of exudates and border cell function in soil is an exciting and developing one that awaits the production of appropriate mutant and transgenic lines for further study in the soil environment.  相似文献   

8.
Root Caps and Rhizosphere   总被引:1,自引:0,他引:1  
In this paper we discuss recent work on the physiological, molecular, and mechanical mechanisms that underlie the capacity of root caps to modulate the properties of the rhizosphere and thereby foster plant growth and development. The root cap initially defines the rhizosphere by its direction of growth, which in turn occurs in response to gradients in soil conditions and gravity. The ability of the root cap to modulate its environment is largely a result of the release of exudates and border cells, and so provides a potential method to engineer the rhizosphere. Factors affecting the release of border cells from the outer surface of the root cap, and function of these cells and their exudates in the rhizosphere, are considered in detail. Release of border cells into the rhizosphere depends on soil matric potential and mechanical impedance, in addition to a host of other environmental conditions. There is good evidence of unidentified feedback signals between border cells and the root cap meristem, and some potential mechanisms are discussed. Root border cells play a significant mechanical role in decreasing frictional resistance to root penetration, and a conceptual model for this function is discussed. Root and border cell exudates influence specific interactions between plant hosts and soil organisms, including pathogenic fungi. The area of exudates and border cell function in soil is an exciting and developing one that awaits the production of appropriate mutant and transgenic lines for further study in the soil environment.  相似文献   

9.
Allelochemicals and other metabolites released by plant roots play important roles in rhizosphere signalling, plant defence and responses to abiotic stresses. Plants use a variety of sequestration and transport mechanisms to move and export bioactive products safely into the rhizosphere. The use of mutants and molecular tools to study gene expression has revealed new information regarding the diverse group of transport proteins and conjugation processes employed by higher plants. Transport systems used for moving secondary products into and out of root cells are similar to those used elsewhere in the plant but are closely linked to soil environmental conditions and local root health. Root cells can rapidly generate and release large quantities of allelochemicals in response to stress or local rhizosphere conditions, so the production and transport of these compounds in cells are often closely linked. Plants need to manage the potentially toxic allelochemicals and metabolites they produce by sequestering them to the vacuole or other membrane-bound vesicles. These compartments provide secure storage areas and systems for safely moving bioactive chemicals throughout the cytosol. Release into the apoplast occurs either by exocytosis or through membrane-bound transport proteins. This review discusses the possible transport mechanisms involved in releasing specific root-produced allelochemicals by combining microscopic observations of the specialized root cells with the physical and chemical properties of the exudates.  相似文献   

10.
Abstract

Plant roots are responsible for the acquisition of nutrients and water from the soil and have an important role in plant response to soil stress conditions. The direction of root growth is gravitropic in general. Gravitropic responses have been widely studied; however, studies about other root tropisms are scarce. Soil salinity is a major environmental response factor for plants, sensed by the roots and affecting the whole plant. Our observations on root architecture of Kochia (Bassia indica) indicated that salinity may cue tropism of part of the roots toward increasing salt concentrations. We termed this phenomenon “positive halotropism”. It was observed that Kochia individuals in the field developed horizontal roots, originating from the main tap root, which was growing toward saline regions in the soil. Under controlled conditions in greenhouse experiments, Kochia plants were grown in pots with artificial soil salinity gradients, achieved by irrigation with saline and fresh water. It was shown that plants grown in low‐salt areas developed a major horizontal root toward the higher salt concentration region in the gradient. In regions of high salinity and in the absence of a salinity gradient, roots grew vertically without a major horizontal root. The novel finding of “positive halotropism” is discussed.  相似文献   

11.
Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.  相似文献   

12.
Elevated ozone (O3) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O3 sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O3-enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response. We found that hosts with higher O3 sensitivity had significantly lower rust severity than hosts with lower sensitivity. Furthermore, the effect of increased O3 on the diversity and composition of microbial communities was highly dependent on poplar compartments, with the microbial network complexity patterns being completely opposite between the two clones. Notably, microbial source analysis estimated that phyllosphere fungal communities predominately derived from root endosphere and vice versa, suggesting a potential transmission mechanism between plant above- and below-ground systems. These promising results suggest that further investigations are needed to better understand the interactions of abiotic and biotic stresses on plant performance and the role of the microbiome in driving these changes.  相似文献   

13.
Root responses to soil physical conditions; growth dynamics from field to cell   总被引:11,自引:0,他引:11  
Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.  相似文献   

14.
林木共生菌系统及其作用机制——以杨树为例   总被引:1,自引:0,他引:1  
袁志林  潘雪玉  靳微 《生态学报》2019,39(1):381-397
杨树(Populus)是重要造林树种,也是研究林木基础生物学性状的模式材料。不仅如此,杨树可与多种细菌(内生细菌、内生固氮菌和根际促生菌)和真菌(外生菌根真菌、丛枝菌根真菌和内生真菌)类群建立共生关系,为揭示树木和微生物之间的互惠共生机制提供了理想模型。这些共生菌能积极调控林木生长发育、营养吸收和生理生态过程。目前在杨树-双色蜡蘑(Laccaria bicolor)形成的外生菌根发育、提高杨树耐盐、耐重金属的生理与分子机制、叶片内生真菌群落结构与病害发生、菌根辅助细菌和菌丝内共生细菌-真菌-杨树形成的三重跨界共生等方面取得多项突破。近年来,一批模式草本植物微生物组(microbiome)计划相继实施,对共生菌群落结构和功能的认识有了革命性的进步。以美洲黑杨、毛果杨和胶杨为代表的林木微生物组研究也已启动,表明宿主基因型和环境因子可显著影响共生菌群落结构与物种组成;在根际(rhizosphere)和内生(endosphere)环境存在结构和功能迥异的菌群。另一方面,以根系为诱饵,通过宿主表型来推测菌群功能的反向"钓鱼"策略将推动林木根际微生物工程研究,为揭示杨树-微生物群落的相互关系、菌群进化搭建了研究模型。总之,深入认识多元微生物对林木表型和生理代谢的表观遗传学调控机制将为今后创制新型菌剂并用于高效育苗和抗性育种提供新的思路,具有重要的科学意义和应用价值。  相似文献   

15.
Vesicular-arbuscular mycorrhizae (VAM) enhance plant growth through increased nutrient uptake, stress tolerance and disease resistance. As an integral part of the root system, they interact with other microorganisms in soil and result in increased root exudation approaching about 25% of the plant dry matter production. Roots support a multitude of microorganisms that, in concert, can have profound influence on growth and survival of the plant. VAM fungi can alter the root exudation pattern, enhance chitinolytic activity and alter photosynthetic/respiratory deficiencies. VAM-positive plants are known to exhibit varied resistance towards soil-borne and foliar pathogens. The known interactions include a number of mechanisms, such as exclusion of the pathogen, lignification of plant cell walls, changed phosphate nutrition resulting in altered exudation by roots, and formation of inhibitory low molecular weight compounds. The purpose of this review is to discuss VAM-plant-pathogen interactions and the possible mechanisms involved in altered resistance. Based on these observations, a working model is proposed to explain the VAM-disease interaction under varied environmental conditions.  相似文献   

16.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

17.
Fundamental plant traits such as support, anchorage, and protection against environmental stress depend substantially on biomechanical design. The costs, subsequent trade-offs, and effects on plant performance of mechanical traits are not well understood, but it appears that many of these traits have evolved in response to abiotic and biotic mechanical forces and resource deficits. The relationships between environmental stresses and mechanical traits can be specific and direct, as in responses to strong winds, with structural reinforcement related to plant survival. Some traits such as leaf toughness might provide protection from multiple forms of stress. In both cases, the adaptive value of mechanical traits may vary between habitats, so is best considered in the context of the broader growth environment, not just of the proximate stress. Plants can also show considerable phenotypic plasticity in mechanical traits, allowing adjustment to changing environments across a range of spatial and temporal scales. However, it is not always clear whether a mechanical property is adaptive or a consequence of the physiology associated with stress. Mechanical traits do not only affect plant survival; evidence suggests they have downstream effects on ecosystem organization and functioning (e.g., diversity, trophic relationships, and productivity), but these remain poorly explored.  相似文献   

18.
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to different types of abiotic stresses has been documented. Different environmental stresses lead to altered methylation status of DNA as well as modifications of nucleosomal histones. Understanding how epigenetic mechanisms are involved in plant response to environmental stress is highly desirable, not just for a better understanding of molecular mechanisms of plant stress response but also for possible application in the genetic manipulation of plants. In this review, we highlight our current understanding of the epigenetic mechanisms of chromatin modifications and remodeling, with emphasis on the roles of specific modification enzymes and remodeling factors in plant abiotic stress responses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

19.
高坤  常金科  黎家 《植物学报》2018,53(2):154-163
根的向水性生长是指植物通过根尖感知土壤中的水分梯度, 向着水势较高区域生长的一种生物学特性, 这一特性对植物从土壤中有效获取水分极为重要。植物向水性研究已成为当前植物学研究的热点领域, 但对于调控这一生理反应的分子机制仍知之甚少。目前的研究表明, MIZ1和GNOM作为植物向水性反应的重要调节因子, 正向调控植物根的向水性生长。此外, 植物激素、光、ROS及钙离子也参与调节植物的向水性反应。该文将从向水性的研究历史、调控基因以及内外因素等方面进行阐述, 便于读者全面了解植物向水性研究进展, 以期为向水性研究提供新思路。  相似文献   

20.
植物硝酸根信号感受与传导途径   总被引:2,自引:0,他引:2  
硝酸根不仅是植物的主要氮源,而且作为重要的信号分子,在植物的生长发育及逆境响应过程中发挥了重要作用。本文重点介绍了硝酸根作为信号分子在基因表达,根系、叶片发育,种子休眠以及逆境响应调控中作用机理的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号