首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water-saving irrigation systems that have been developed to increase water-use efficiency (WUE) without significant yield reduction. In order to investigate whether a high-value horticultural crop such as tomato responded differently to RDI and PRD, we compared the physiological and growth responses of tomato plants using a split-root system. Plants were grown in a greenhouse under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: (i) Control, receiving an amount of water equivalent to 100% of plant transpiration; (ii) PRD, in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil and switching irrigation between sides weekly; and (iii) RDI, in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Leaf RWC and midday leaf Ψ decreased substantially in RDI-treated plants, while the PRD plants exhibited relatively higher Ψ and RWC values. Both PRD and RDI treatments reduced by about 30% the total plant dry mass compared with the control. However, plant transpiration was reduced by about 50% in both PRD and RDI, allowing a significant improvement in whole-plant WUE. Stomatal conductance (Gs) and leaf growth were also significantly reduced by PRD and RDI. These results may be related to a significant increase in xylem sap pH and leaf apoplastic pH. Generally, the photosynthetic apparatus of tomato leaves had a high resistance to restricted water availability. In fact, the decreased Gs had no major negative impact on carbon assimilation. However, V cmax, i.e. Rubisco efficiency, was significantly decreased in RDI plants with respect to control ones. This may imply that, although the differences between the PRD and RDI treatments in our study were subtle, they may become more marked with a more prolonged and severe water deficit.  相似文献   

2.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water saving irrigation systems that have been developed to increase water use efficiency (WUE) without significant yield reduction. To examine whether tomato responded differently to RDI and PRD, we compared the changes in antioxidative defenses in tomato plants using a split-root system. Tomato plants were grown for 21 days under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: Control, receiving an amount of water equivalent to 100% of plant transpiration; PRD in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil, and switching irrigation between sides weekly; RDI in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Relative water content (RWC), midday leaf Ψ and chlorophyll content decreased largely in RDI-treated plants, whereas the PRD plants exhibited relatively higher Ψ and RWC values. An enhanced level of lipid peroxidation in both roots and leaves indicated that PRD and RDI caused oxidative stress in tomato plants. In leaves, superoxide dismutase (SOD), soluble peroxidase (POX) and polyphenol oxidase (PPO) activities showed an increase in the early phase of water deficit, and then decreased in the remaining phase of the drying cycle. However, the increase was more pronounced under RDI. Catalase (CAT) activity declined continuously from the onset of PRD and RDI treatments to below the control level, and the reduction was less under PRD than RDI. POX cell-wall associated activities exceeded the control level by 450% and 230%, respectively, under RDI and PRD. At the root level, while CAT activity also decreased under both PRD and RDI, the activities of SOD, POX and PPO significantly increased and their activities showed an alternating increase/decrease paralleling the alternating irrigation in PRD-treated roots. As a result of the difference in POX and PPO activities between the two water treatments applied, PRD-treated plants accumulated more soluble and cell-wall bound phenolic compounds.  相似文献   

3.
It is widely believed that partial root drying (PRD) reduces water losses by transpiration without affecting yield. However, experimental work carried out to date does not always support this hypothesis. In many cases a PRD treatment has been compared to a full irrigated treatment, so doubt remains on whether the observed benefits correspond to the switching of irrigation or just to PRD being a deficit irrigation treatment. In addition, not always a PRD treatment has been found advantageous as compared to a companion regulated deficit irrigation (RDI) treatment. In this work we have compared the response of mature ‘Manzanilla‘ olive trees to a PRD and an RDI treatment in which about 50% of the crop evapotranspiration (ETc) was supplied daily by localised irrigation. We alternated irrigation in the PRD treatment every 2 weeks in 2003 and every 3 weeks in 2004. Measurements of stem water potential (Ψstem), stomatal conductance (g s) and net CO2 assimilation rate (A) were made in trees of both treatments, as well as in trees irrigated to 100% of ETc (Control trees) and in Rain-fed trees. Sap flow was also measured in different conductive organs of trees under both PRD and RDI treatments, to evaluate the influence of alternating irrigation on root water uptake and tree water consumption. We found small and random differences in Ψstem, g s and A, which gave no evidence of PRD causing a positive effect on the olive tree performance, as compared to RDI. Stomatal conductance decreased in PRD trees as compared to Control trees, but a similar decrease in g s was also recorded in the RDI trees. Sap flow measurements, which reflected water use throughout the irrigation period, also showed no evidence of g s being more reduced in PRD than in RDI trees. Daily water consumption was also similar in the trees of the deficit irrigation treatments, for most days, throughout the irrigation period. Alternating irrigation in PRD trees did not cause a change in either water taken up by main roots at each side of the trees, or in the sap flow of both trunk locations and main branches of each side. Results from this work, and from previous work conducted in this orchard, suggest that transpiration is restricted in trees under deficit irrigation, in which roots are left in drying soil when water is applied by localised irrigation, and that there is no need to alternate irrigation for achieving this effect. Section Editor: R. E. Munns  相似文献   

4.
Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.  相似文献   

5.
The increasing demands on limited water supplies worldwide require the adoption of more efficient irrigation techniques for sustainable production in agriculture. Partial rootzone drying (PRD) is one of the techniques that offer potential saving of irrigation water. This technique involves alternate irrigation to two sides of a plant root system. The studies reported here investigated PRD irrigation regimes and the optimum time of starting PRD in potatoes grown in a protected environment. In the first experiment, plants of the potato cv. Estima were exposed to five different irrigation treatments and a fully watered control at tuber initiation. The treatment that performed most similar to the control was alternate PRD to field capacity (APRD100). This treatment produced similar total leaf area, haulm fresh and dry weights, plant water status and no significant yield reduction compared with the control plants. The APRD100 treatment utilised 29% less water and increased water use efficiency (WUE) by 19%. In the second experiment, the APRD100 irrigation was started at 2, 4, 6, 8 and 10 weeks after plant emergence. Vegetative growth and yield increased with the delay of the APRD100. APRD100 started at 6 weeks after emergence did not significantly reduce fresh tuber yield but received 21% less total water with a 19% increase in WUE. The results indicate that PRD may have potential use in the potato crop for conserving irrigation water with minimal loss of yield.  相似文献   

6.
The effects of drought on membrane lipids and leaf pigments and the ability of andiroba (Carapa guianensis Aubl.) plants to attenuate oxidative damage through antioxidant enzymes or adjusting carotenoids and glycinebetaine (GB) were examined. Assessments were performed when pre-dawn leaf water potential (Ψpd) of water-stressed plants reached −1.35 and −3.21 MPa (15 and 27 days after withholding irrigation) and 12 h after resuming watering (short-term rewetting, day 28). Oxidative damages to lipids were evident on day 15, in which drought caused an increase of 47% in malondialdehyde (MDA) content. On day 27, MDA content did not differ between treatments. The activity of superoxide dismutase remained unchanged over experimental period, while significant increases in the ascorbate peroxidase (APX, 110%) and catalase (CAT, 50%) activities were observed only on day 27. GB content was 62% (day 15) and 112% (day 27) higher in water-stressed plants than in control. Regardless of Ψpd, both chlorophyll (Chl) a, Chl b and total carotenoids remained unchanged between well-watered and water-stressed plants, indicating that drought did not result in degradation of leaflet pigments. On day 28, Ψpd of water-stressed plants increased near to control plants and both activities of APX and CAT did not differ between treatments. Altogether, adjustments in APX and CAT activity and in the GB content were efficient strategies to prevent expressive oxidative damages in water-stressed andiroba plants.  相似文献   

7.
At Mono Lake, California, we investigated field water relations, leaf and xylem chemistry, and gas exchange for two shrub species that commonly co-occur on marginally saline soils, and have similar life histories and rooting patterns. Both species had highest root length densities close to the surface and have large tap roots that probably reach ground water at 3.4-5.0 m on the study site. The species differed greatly in leaf water relations and leaf chemistry. Sarcobatus vermiculatus had a seasonal minimum predawn xylem pressure potential (ψpd) of -2.7 MPa and a midday potential (ψmd) of -4.1 MPa. These were significantly lower than for Chrysothamnus nauseosus, which had a minimum ψpd of -1.0 MPa and ψmd of -2.2 MPa. Sarcobatus had leaf Na of up to 9.1 % and K up to 2.7 % of dry mass, and these were significantly higher than for Chrysothamnus which had seasonal maxima of 0.4% leaf Na and 2.4 % leaf K. The molar ratios of leaf K/Na, Ca/Na, and Mg/Na were substantially lower for Sarcobatus than for Chrysothamnus. Xylem ionic contents indicated that both species excluded some Na at the root, but that Chrysothamnus was excluding much more than Sarcobatus. The higher Na content of Sarcobatus leaves was associated with greater leaf succulence, lower calculated osmotic potential, and lower xylem pressure potentials. Despite large differences in water relations and leaf chemistry, these species maintained similar diurnal patterns and rates of photosynthesis and stomatal conductance to water vapor diffusion. Sarcobatus ψpd may not reflect soil moisture availability due to root osmotic and hydraulic properties.  相似文献   

8.
The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd?=???1.0 or ??1.5 MPa) and severe (Ψpd?=???3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.  相似文献   

9.
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3 concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3 concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3 and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.  相似文献   

10.
Responses of Quercus ilex L. seedlings from three different localities in Italy to experimentally imposed drought stress were analysed. Predawn (Ψpd) and midday (Ψm) leaf water potential of stressed seedlings decreased on an average until −4.0 and −4.2 MPa, respectively, in the severe water stress. At the end of the severe water stress the relative water content (RWC) was 72.5 – 83.6 % and the photosynthetic rates (PN) near zero. The critical threshold value of Ψpd for complete stomatal closure was from −4.0 to −4.5 MPa. The leaf damage after the severe water stress was significantly greater in seedlings originated from the acorns of climax area (45 % total leaf injured area and 40 % fallen leaves) than in the other seedlings (on an average 20.5 % total leaf injured area and 21 % fallen leaves). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The effect of irrigation frequency on leaf physiomorphological processes of rose-scented geranium (Pelargonium capitatum × P. radens cv. Rose) was investigated in a glasshouse study at the Hatfield Experimental Farm of the University of Pretoria, Pretoria, South Africa, from November 2005 to October 2006. Daily, and every 2nd, 3rd, 4th, and 5th day irrigation were applied as treatments. Leaf samples for electron-microscopic observations were taken one week prior to harvesting, whereafter all plants were re-watered. For each of the irrigation frequency treatments, 50% of the plants were then exposed to a one-week irrigation withholding period (brief stress treatment) prior to harvesting. During this period, physiological properties were recorded on a daily basis to identify or monitor change. Higher irrigation frequency and a brief water stress period increased essential oil yield. Lower irrigation frequency tended to increase the citronellol to geraniol (C:G) ratio to unacceptably high levels (C:G > 3). Upon re-watering, stomatal conductance (Gs) and transpiration rate (Rt) were significantly lower for the lower irrigation frequency treatments, compared to the higher irrigation frequency treatments, while no noticeable differences were observed in water potential (ψw) and relative water content (RWC). At the end of the one-week stress period, Gs, Rt, ψw and RWC were lower for the plants that were more frequently irrigated compared to the less frequently irrigated treatments. Water stress reduced leaf size, and apparently increased trichome density, whereas the total number of trichomes per leaf remained more or less the same, indicating that total essential oil yield is mainly affected by leaf number (and not by leaf size or trichome number). Stomatal closure was the main water stress avoiding/adaptation mechanism. These results demonstrate that rose-scented geranium plants can make physiomorphological adaptations to save water. However, such a water saving strategy was counter-productive, since it resulted in lower essential oil yield and lower water-use efficiency.  相似文献   

12.

Aims

Climate, soil water potential (SWP), leaf relative water content (RWC), stomatal conductance (gs), fruit and shoot growth, and carbohydrate levels were monitored during the 2008 and 2009 growing seasons to study the responses of ‘Gala’ and ‘Fuji’ apple trees to irrigation placement or volume.

Methods

Three irrigation treatments were imposed, conventional irrigation (CI), partial root-zone drying (PRD, 50% of CI water on one side of the root-zone, which was alternated periodically), and continuous deficit irrigation (DI, 50% of CI water on both sides of the root-zone).

Results

After each irrigation season, DI generated twice the soil water deficit (SWDint) than PRD (average of dry and wet sides) and a greater integrated leaf water deficit (LWDint) than PRD and CI. Both PRD and DI reduced gs by 9 and 15% over the irrigation period. RWC of both PRD and DI was directly related to SWP and inversely related (non-linear) to vapor pressure deficit (VPD), whereas it was unrelated to gs. Considering individual sampling days, gs of ‘Gala’ leaves was inversely related to VPD mainly until early August (fruit at cell expansion phase and high VPD), while it was directly related to VPD in September (no fruit and low VPD). On the contrary, gs of ‘Fuji’ leaves was inversely related to VPD from late August until mid October (low VPD and fruit at cell expansion phase). Fruit growth was not affected by irrigation, whereas shoot and trunk growth was reduced by DI. Irrigation induced sporadic and inconsistent changes in carbohydrate contents or partitioning, with a general tendency of DI leaves to degrade and PRD to accumulate sorbitol and sucrose in dry periods.

Conclusions

‘Gala’ trees exhibited a more conservative water use than ‘Fuji’ trees due primarily to different timing of fruit growth and crop loads. Different levels of SWDint, rather than changes in stomatal control and carbohydrate partitioning, seem to play a major role in determining a better water status in PRD than in DI trees.  相似文献   

13.
The objective of this study was to understand and characterize the physiological and biochemical tolerance mechanisms of Argania spinosa under drought stress for selection tolerant ecotypes. Significant differences were observed among ecotypes in indices of leaf water status studied: stomatal conductance (gs), predawn leaf water potential (Ψpd) and leaf relative water content. There was a significant decrease in these physiological traits with increasing degree of drought stress in all ecotypes. Drought stress significantly increased endogenous H2O2 and lipid peroxidation. Moderate and severe drought stress increased significantly the catalase, superoxide dismutase, peroxidase, polyphenoloxidase and lipoxygenase activities, depending on time. Their constitutive activities were higher in inland ecotypes than in coastal ecotypes. According to canonical discriminant analysis, the inland ecotypes were essentially distinguished from the coastal ecotypes by the following physiological and biochemical traits: Ψpd, gs, polyphenol oxidase, superoxide dismutase and malonyldialdehyde. Inland ecotypes seem to be more tolerant to drought stress than coastal ecotypes.  相似文献   

14.
  1. Drought affects many agriculturally important areas, hampering the cultivation of water intensive crops such as tomatoes.
  2. Unlike processing tomatoes, deficit irrigation of fresh market tomatoes is not currently practiced. Deficit irrigation could have negative trade‐offs for yield and pest populations by changing plant nutritional values and the microenvironment.
  3. The present study compared crop response and insect populations at two field locations: an on‐farm trial with 0%, 15% and 30% water deficit treatments, and a research station trial with 0%, 10%, 20% and 30% water deficit treatments.
  4. At the on‐farm trial, water deficits of 30% affected fruit yield, leaf relative water content (RWC) and leaf δ13C, whereas, in the research station trial, water deficits only affected leaf RWC. Treatments did not change the abundance of any insect groups.
  5. Sap‐feeding insects such as silverleaf whitefly (Bemisia tabaci) increased with plant traits indicating hydration such as canopy temperature depression (CTD) and RWC. Furthermore, CTD influenced the composition of insect communities.
  6. Sap‐feeding insect abundance may vary with traits indicating hydration because of turgor pressure required for feeding, as well as a more suitable microenvironment.
  相似文献   

15.
The aim of this study was to investigate whether the root system of Mesembryanthemum crystallinum (L.) plays a role in triggering the induction of crassulacean acid metabolism (CAM) during water stress. Depriving well-irrigated plants of water, by allowing the soil surrounding the roots to dry, caused increased daily losses in leaf relative water content (RVVC) and mesophyll cell turgor pressure. The RWC of the roots also declined. Subsequently plants exhibited physiological characteristics of CAM photosynthesis (i.e. diurnal fluctuations in leaf titratable acidity and nocturnal net CO2 fixation). When the root system of plants was divided equally between two soil compartments and one half deprived of water, plants exhibited physiological characteristics of CAM without prior changes in leaf RWC content or mesophyll cell turgor pressure. Only the RWC of the water-stressed portion of the roots was reduced. These data suggest that in water-stressed plants daily changes in leaf water relations greater than those observed in well-irrigated plants, are not essential to trigger CAM expression. It is probable that a reduction in soil water availability can be perceived by the roots of M. crystallinum and that this information is conveyed to the leaves triggering the transition from C3 to CAM photosynthesis.  相似文献   

16.
为揭示油橄榄(Olea europaea L.)耐旱性与光合特性之间的关系,以筛选出的适宜于半干旱川西南地区种植的7个引进油橄榄品种为供试材料,采用盆栽模拟干旱胁迫的方法,研究持续干旱胁迫对其光合特性的影响。结果表明:(1)随着干旱胁迫程度加剧,7个油橄榄品种叶片相对含水量均显著降低,至干旱胁迫后期(25d),各品种叶片均出现大幅失水,其中品种‘科拉蒂’失水率最高(45.79%),而品种‘小苹果’失水率最低(25.52%),说明‘小苹果’叶片在干旱胁迫下较其他油橄榄品种具有更高保水能力。(2)随着干旱胁迫程度加剧,7个油橄榄品种叶片光合色素含量均不同程度降低,表明光合色素分解量大于合成量;干旱胁迫持续25d时,品种‘豆果’的叶绿素a和叶绿素b含量下降幅度最大(P0.05),品种‘皮削利’类胡萝卜素含量下降幅度最大(P0.05),而品种‘小苹果’叶绿素a含量下降幅度最小。(3)随着干旱胁迫的持续进行,各油橄榄品种叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)均不同程度降低,而水分利用效率(WUE)则呈上升趋势;干旱胁迫期间,品种‘佛奥’的Pn、Tr和Ci以及‘皮削利’的Gs降幅均高于其他品种,而‘小苹果’的Pn、Gs和Ci降幅均为最小且WUE上升幅度最大。研究发现,在持续干旱胁迫条件下,油橄榄幼苗叶片均大幅失水,光合色素结构被破坏、色素分解、含量降低,同时气孔关闭蒸发减少,光合作用减弱,而供试油橄榄品种中‘小苹果’对干旱胁迫的适应性最强,适宜于在半干旱的川西地区种植。  相似文献   

17.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (P N), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded.  相似文献   

18.
Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (gs) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced gs in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.  相似文献   

19.
The water status of Fagus sylvatica L. and Quercus petraea (Matt) Liebl. was analysed during a cycle of progressive natural drought in southern Europe. Predawn (Ψpd) and midday water potential were measured in transpiring (Ψleaf) and non-transpiring leaves (Ψxyl). Furthermore, photosynthesis (A), stomatal conductance to water vapour (gs) and sap flow (Fd) were recorded on the same dates. Apparent leaf specific hydraulic conductance in the soil–plant–air continuum (Kh) and whole tree hydraulic conductance (Khsf) were calculated by using the simple analogy of the Ohm’s law. Kh was estimated at different points in the pathway as the ratio between transpiration (E) in the uppermost canopy leaves at midday and the gradient of water potential in the different compartments of the continuum soil–roots–stem–branches–leaves. There was a progressive decrease in water potential measured on non-transpiring leaves at the base of tree crown in both species (Ψlxyl) from the beginning of the growing season to the end of summer. A similar decrease was shown in shoot water potential (Ψuxyl) at the uppermost canopy. Predawn water potential (Ψpd) was high in both species until late July (28 July); afterwards, a significant decrease was registered in F. sylvatica and Q. petraea with minimum values of −0.81±0.03 and −0.75±0.06 MPa, respectively, by 15 September. In both species, leaf specific hydraulic conductance in the overall continuum soil–plant–air (Kh) decreased progressively as water stress increases. Minimum values of Kh and Khsf were recorded when Ψpd was lower. However, Q. petraea showed higher Kh than F. sylvatica for the same Ψpd. The decrease in Kh with water stress was mainly linked to its fall from the soil to the lowermost canopy (Ksrs). Nevertheless, a significant resistance in the petiole–leaf lamina (Kpl) was also recorded because significant differences in all dates were found on Ψ between transpiring and non-transpiring leaves from the same shoot. The decline in Kh was followed by an increase in stomatal control of daily water losses through the decrease of stomatal conductance to water vapour (gs) during the day. It promoted a seasonal increase in the stomatal limitation to carbon dioxide uptake for photosynthesis (A). These facts were more relevant in F. sylvatica, which had concurrently a higher decline in water use at the tree level than Q. petraea. The results showed a strong coupling in F. sylvatica and Q. petraea between processes at leaf and tree level. It may be hypothesised a role of specific hydraulic conductance not only in the regulation of water losses by transpiration but also of carbon uptake.  相似文献   

20.
Yu  Gui-Rui  Miwa  Takuji  Nakayama  Keiichi  Matsuoka  Nobuhiro  Kon  Hisashi 《Plant and Soil》2000,227(1-2):47-58
The present study deals with the relationships between water status parameters of plant leaves and reflectances (Rλ) at characteristic wavelengths, between 522 and 2450 nm, as well as reflectance ratios, Rλ/R1430, Rλ/R1650, Rλ/R1850, Rλ/R1920, and Rλ/R1950, based on the air-drying experimental results of soybean (Glycine max Merr.), maize (Zea mays L.), tuliptree (Liriodendron tulipifera L.) and viburnum (Viburnum awabuki K. Koch.) plants. The water status parameters include leaf water content per unit leaf area (LWC), specific leaf water content (SWC), leaf moisture percentage of fresh weight (LMP), relative leaf water content (RWC) and relative leaf moisture percentage on fresh weight basis (RMP). Effective spectral reflectances and reflectance ratios for estimating the LWC, SWC, LMP, RWC and RMP were identified. With these spectral indices, approaches to estimating LWC, RWC and RMP were discussed. Eventually, an attempt on universal formulas was made for estimating the leaf moisture conditions of both herbaceous and woody plants as mentioned above. Moreover, applicability of these formulas was checked with the field experimental results of soybean and maize grown under water and nutrient stresses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号