首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract

Fine roots represent a small proportion of total plant biomass however they represent the most dynamic component of the root systems of woody plants. There is limited information on the beech fine root production in Mediterranean ecosystems and especially in Greece. We measured live, dead and total fine root biomass (d<2 mm) (LFRB, DFRB and TFRB, respectively) over a growing season in a beech (Fagus sylvatica L.) stand on Paiko mountain, NW Greece, in order to contribute to the generally scarce knowledge of the fine root biomass of beech stands. It was found that TFRB and LFRB increased from May to July and then decreased. LFRB decreased with soil depth while there was no pattern at the change of DFRB with soil depth.  相似文献   

2.
We have limited understanding of architecture and morphology of fine root systems in large woody trees. This study investigated architecture, morphology, and biomass of different fine root branch orders of two temperate tree species from Northeastern China—Larix gmelinii Rupr and Fraxinus mandshurica Rupr —by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e., 0–10 and.10–20 cm). Branching ratio (R b) differed with the level of branching: R b values from the fifth to the second order of branching were approximately three in both species, but markedly higher for the first two orders of branching, reaching a value of 10.4 for L. gmelinii and 18.6 for F. mandshurica. Fine root diameter, length, SRL and root length density not only had systematic changes with root order, but also varied significantly with season and soil depth. Total biomass per order did not change systematically with branch order. Compared to the second, third and/or fourth order, the first order roots exhibited higher biomass throughout the growing season and soil depths, a pattern related to consistently higher R b values for the first two orders of branching than the other levels of branching. Moreover, the differences in architecture and morphology across order, season, and soil depth between the two species were consistent with the morphological disparity between gymnosperms and angiosperms reported previously. The results of this study suggest that root architecture and morphology, especially those of the first order roots, should be important for understanding the complexity and multi-functionality of tree fine roots with respect to root nutrient and water uptake, and fine root dynamics in forest ecosystems.  相似文献   

3.
Gullies formed in the Velhas River basin in Brazil have been filled with urban construction waste for physical stabilisation purposes. Aimed at rehabilitating gullies, we selected woody species from the Brazilian Cerrado that can grow on rocky substrates under greenhouse conditions. An assessment was made regarding plant growth in both rocky and natural soil substrates by analysing the height, diameter, fresh and dry weights of shoots and roots, plant water content, root occupation and architecture. Principal component analysis and Chi-squared tests segregated rock-tolerant species based on the specific influence on root dry and fresh weights. Fast-growing species reduced the emergence of their lateral roots under rocks, compromising their growth in height and biomass production. In contrast, slow-growing woody species were particularly suitable for gully rehabilitation because these species exhibited a genetic pattern of low lateral root emergence that prevented damage to their roots. Most slow-growing species demonstrated a similar growth pattern in both substrates, and some of them, such as Copaifera langsdorffii, achieved better growth in height and biomass production on rocks than on soil, a finding attributed to the root plastic response involving primary root elongation and lateral root emergence. Therefore, slow-growing species are recommended for gully rehabilitation procedures.  相似文献   

4.
In contrast to the well-documented seasonal variation in growth of below- and above-ground components of trees, the annual variation in below- and aboveground production is not well understood. In this study, we report on the monitoring of an unmanaged hardwood forest ecosystem in a small watershed of southern Quebec between 1993 and 1999. Below- and above-ground biomass production, leaf and soil solution chemistry, and air temperature were measured at different regular intervals and are reported on an annual basis. The objective of the study was to describe the annual dynamics of carbon partitioning between below- and above-ground tree components and to gain a better understanding of the soil and climatic factors that govern it. Fine root production peaked one year earlier than woody biomass production and years with high production of fine roots had low woody biomass production. All models that included May temperature in the calculation of the predicting/independent variables were significant predictors of total tree biomass production (r > 0.87). Fine root production was associated negatively with the previous year average growing season temperature (r < -0.84). Soil solution NO3 , NH4 + and NO3 + NH4 + concentrations were positively correlated with fine root production (r > 0.72) and negatively correlated with woody biomass production (r < -0.84). Leaf N and P concentrations were negatively correlated (r = -0.99 and r = -0.98, respectively) with fine root production for the period of 1994–1998. Our results suggest that a cool growing season, and in particular a cool month of October, is likely to result in low fine root production and nutrient uptake the following year and, therefore, to increase soil N availability and decrease leaf N. This initial response is thought to be the first step of a feedback loop involving plant N nutrition, soil N availability, fine root growth and aboveground biomass production that led to a cyclical (3–4 years) but asynchronous production of fine roots and aboveground biomass production.  相似文献   

5.
刘立斌  钟巧连  倪健 《生态学报》2018,38(24):8726-8732
常规根系生物量研究方法在我国西南喀斯特森林地区实施困难,根系挖掘法所得研究结果不确定性高,导致目前根系生物量数据匮乏。选择贵州中部喀斯特常绿落叶阔叶混交林为对象,建立常规的根系生物量回归方程,结合群落调查数据,以期研究该森林木本植物的根系生物量特征及其空间分布格局。利用106株乔木、34株灌木和34株藤本标准木根系数据,构建了5种优势乔木(安顺润楠Machilus cavaleriei、化香树Platycarya strobilacea、云贵鹅耳枥Carpinus pubescens、云南鼠刺Itea yunnanensis和窄叶石栎Lithocarpus confinis)、3种优势灌木(刺异叶花椒Zanthoxylum dimorphophyllum、倒卵叶旌节花Stachyurus obovatus和异叶鼠李Rhamnus heterophylla)和2种优势藤本(藤黄檀Dalbergia hancai Benth和小果蔷薇Rosa cymosa)以及乔木通用、灌木通用和藤本通用共13个根系生物量回归方程。利用这些方程计算得到该喀斯特森林木本植物总根系生物量为22.72Mg/hm2。乔木根系生物量(22.57 Mg/hm2)远高于灌木和藤本,占森林总根系生物量的99.30%。5个优势乔木树种的根系生物量(19.67 Mg/hm2)占森林总根系生物量的86.54%。物种根系发达程度是影响根系生物量空间分布格局的重要因素。研究可为喀斯特地区植被地下生物量与碳储量的全面估算提供一个新途径。  相似文献   

6.
天山林区6种优势种灌木林生物量比较及估测模型   总被引:3,自引:0,他引:3  
采用平均标准木收获法测定了天山东、中、西部林区6种优势种灌木,多刺蔷薇(Rosa spinosissima L.)、黑果小檗(Berberis heteropoda Schrenk.)、刚毛忍冬(Lonicera hispida Pall.)、天山绣线菊(Spiraea.tianschanica Pojark.)、新疆方枝柏(Juniperus pseudosabina Fisch.et Mey.)和黑果栒子(Cotoneaster melanocarpus Lodd.)的地上和地下生物量并构建基于D~2H变量的个体生物量模型。结果表明:(1)天山西部林区灌木林的总生物量大于中部和东部的;(2)6种灌木的平均生物量大小排序为刚毛忍冬黑果栒子黑果小檗新疆方枝柏天山绣线菊多刺蔷薇;(3)6种灌木的生物量贡献主要源于根和枝生物量,不同器官生物量的大小排序根枝叶;6种灌木叶生物量的大小与枝的生物量之间呈极显著相关(P0.01);(4)以D2H为自变量建立6种灌木不同器官及个体生物量估测模型24个,除黑果小檗和新疆方枝柏叶生物量模型达到显著水平(P0.05),其他各组成生物量模型均达到极显著水平(P0.01),模型模拟结果达到了较高的准确度,可用于推算灌木生物量。研究结果可为定量评估天山森林生态系统的固碳功能提供数据支撑,也可为深入开展森林生态系统服务功能评价提供依据。  相似文献   

7.
Extensive communication occurs between plants and microorganisms during different stages of plant development in which signaling molecules from the two partners play an important role. Volatile organic compounds (VOCs) emission by certain plant-growth promoting rhizobacteria (PGPR) has been found to be involved in plant growth. However, little is known about the role of bacterial VOCs in plant developmental processes. In this work, we investigated the effects of inoculation with twelve bacterial strains isolated from the rhizosphere of lemon plants (Citrus aurantifolia) on growth and development of Arabidopsis thaliana seedlings. Several bacterial strains showed a plant growth promoting effect stimulating biomass production, which was related to differential modulation of root-system architecture. The isolates L263, L266, and L272a stimulated primary root growth and lateral root development, while L254, L265a and L265b did not significantly alter primary root growth but strongly promoted lateral root formation. VOC emission analysis by SPME-GC-MS identified aldehydes, ketones and alcohols as the most abundant compounds common to most rhizobacteria. Other VOCs, including 1-octen-3-ol and butyrolactone were strain specific. Characterization of L254, L266 and L272a bacterial isolates by 16S rDNA analysis revealed the identity of these strains as Bacillus cereus, Bacillus simplex and Bacillus sp, respectively. Taken together, our data suggest that rhizospheric bacterial strains can modulate both plant growth promotion and root-system architecture by differential VOC emission.  相似文献   

8.

Background and Scope

Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored.

Methods

Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants.

Key Results

The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium.

Conclusions

Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.  相似文献   

9.
Carbon cost of root systems: an architectural approach   总被引:16,自引:2,他引:14  
Root architecture is an important component of nutrient uptake and may be sensitive to carbon allocational changes brought about by rising CO2. We describe a deformable geometric model of root growth, SimRoot, for the dynamic morphological and physiological simulation of root architectures. Using SimRoot, and measurements of root biomass deposition, respiration and exudation, carbon/phosphorus budgets were developed for three contrasting root architectures. Carbon allocation patterns and phosphorus acquisition efficiencies were estimated for Phaseolus vulgaris seedlings with either a dichotomous, herringbone, or empirically determined bean root architecture. Carbon allocation to biomass, respiration, and exudation varied significantly among architectures. Root systems also varied in the relationship between C expenditure and P acquisition, providing evidence for the importance of architecture in nutrient acquisition efficiency.  相似文献   

10.
Hairy root cultures of Hypericum perforatum were obtained following inoculation of aseptically germinated seedlings with A. rhizogenes strain A4M70GUS. Effect of sucrose on the growth and biomass production of hairy root cultures was investigated. Hairy root cultures spontaneously regenerated shoots buds from which a number of shoot culture clones was established. Transformed shoot cultures exhibited good shoot multiplication, elongation and rooting on a hormone-free woody plant medium. Plants regenerated from hairy roots were similar in appearance to the normal, nontransformed plants.  相似文献   

11.
Abstract

Globally, forests cover 4 billion ha or 30% of the Earth's land surface and account for more that 75% of carbon stored in terrestrial ecosystem. However, 20 – 40% of the forest biomass is roots. Roots play a key role in acquisition of water and nutrients from the soil, the transfer of carbon to soil, as well as providing physical stabilisation. In temperate forests of Europe, average biomass of trees is estimated to be ca. 220 t ha?1, of which 52 t ha?1 are coarse roots and 2.4 t ha?1 are fine roots. Thus, forests and their soils belong to the planets largest reservoirs of carbon. As an outcome of a recently established European platform for scientists working on woody roots, COST action E38, a series of papers has been initiated in order to review the current knowledge on processes in and of roots of woody plants and to identify possible knowledge gaps. These reviews concentrate on aspects of roots as indicators of environmental change, biomass of fine roots, and modelling of course root systems. The reviews of roots as indicators of environmental change cover a number of aspects including, specific root length, the calcium to aluminium ratio, root electrolyte leakage, and ectomycorrhiza community composition.  相似文献   

12.
Summary

This is a review of some problems posed by research on tree biology. First, phase change and in vitro culture are discussed as they affect vegetative propagation of woody plants. Then the breeding of timber trees, with an evident and important trend to clonal propagation is considered. Tropical timber tree breeding has enormous potential but has only just started (on very few species). The trend to making tropical woodlands into planted pure stands, of converting production forestry into, ‘tree farming’, an aspect of agriculture, so to speak, is apparent. ‘Ideotypes’ have fallen out of favour but some important ideas as to biomass and its allocation remain and well-defined economic objectives must become paramount. A broad review of the tropical agricultural context with regard to trees, suggests an acute need for far better understanding of them and for much introduction and breeding to generate new woody food-crops.  相似文献   

13.
Aims To identify approaches to improve our understanding of, and predictive capability for, mixed tree–grass systems. Elucidation of the interactions, dynamics and determinants, and identification of robust generalizations that can be broadly applied to tree–grass systems would benefit ecological theory, modelling and land management. Methods A series of workshops brought together scientific expertise to review theory, data availability, modelling approaches and key questions. Location Ecosystems characterized by mixtures of herbaceous and woody plant life‐forms, often termed ‘savannas’, range from open grasslands with few woody plants, to woodlands or forests with a grass layer. These ecosystems represent a substantial portion of the terrestrial biosphere, an important wildlife habitat, and a major resource for provision of livestock, fuel wood and other products. Results Although many concepts and principles developed for grassland and forest systems are relevant to these dual life‐form communities, the novel, complex, nonlinear behaviour of mixed tree–grass systems cannot be accounted for by simply studying or modelling woody and herbaceous components independently. A more robust understanding requires addressing three fundamental conundrums: (1) The ‘treeness’ conundrum. What controls the relative abundance of woody and herbaceous plants for a given set of conditions at given site? (2) The coexistence conundrum. How do the life‐forms interact with each other? Is a given woody–herbaceous ratio dynamically stable and persistent under a particular set of conditions? (3) The net primary productivity (NPP) conundrum. How does NPP of the woody vegetation, the herbaceous vegetation, and the total ecosystem (woody + herbaceous) change with changes in the tree–grass ratio? Tests of the theory and conceptual models of determinants of mixed woody–herbaceous systems have been largely site‐ or region‐specific and have seldom been broadly or quantitatively evaluated. Cross‐site syntheses based on data and modelling are required to address the conundrums and identify emerging patterns, yet, there are very few data sets for which either biomass or NPP have been quantified for both the woody and the herbaceous components of tree–grass systems. Furthermore, there are few cross‐site comparisons spanning the diverse array of woody–herbaceous mixtures. Hence, initial synthesis studies should focus on compiling and standardizing a global data base which could be (1) explored to ascertain if robust generalizations and consistent patterns exist; and (2) used to evaluate the performance of savanna simulation models over a range of woody–herbaceous mixtures. Savanna structure and productivity are the result of complex and dynamic interactions between climate, soils and disturbances, notably fire and herbivory. Such factors are difficult to isolate or experimentally manipulate in order to evaluate their impacts at spatial and temporal scales appropriate for assessing ecosystem dynamics. These factors can, however, be evaluated with simulation models. Existing savanna models vary markedly with respect to their conceptual approach, their data requirements and the extent to which they incorporate mechanistic processes. Model intercomparisons can elucidate those approaches most suitable for various research questions and management applications. Conclusion Theoretical and conceptual advances could be achieved by considering a broad continuum of grass–shrub–tree combinations using data meta‐analysis techniques and modelling.  相似文献   

14.
van der Werf, A., Kooijman, A., Welschen, R. and Lambers, H. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. - Physiol. Plant. 72: 483–491. The respiratory characteristics of the roots of Carex diandra Schrank and Carex acutiformis Ehrh. were investigated. The aims were, firstly to determine the respiratory energy costs for the maintenance of root biomass, for root growth and for ion uptake, and secondly to explain the higher rate of root respiration and ATP production in C. diandra. The three respiratory energy components were derived from a multiple regression analysis, using the relative growth rate and the net rate of nitrate uptake as independent variables and the rate of ATP production as a dependent variable. Although the rate of root respiration and ATP production was significantly higher in C. diandra than in C. acutiformis, the two species showed no significant difference in their rate of ATP production for the maintenance of biomass, in the respiratory energy coefficient for growth (the amount of ATP production per unit of biomass produced) and the respiratory energy coefficient for ion uptake (amount of ATP production per unit of ions absorbed). It is concluded that the higher rate of root respiration of C. diandra is caused by a higher rate of nitrate uptake. At relatively high rates of growth and nitrate uptake, the contribution of the rate of ATP production for ion uptake to the total rate of ATP production amounted to 38 and 25% for C. diandra and C. acutiformis, respectively. At this growth rate, the respiratory energy production for growth contributed 37 and 50%, respectively, to the total rate of ATP production. The relative contribution of the rate of ATP production for the maintenance of biomass increased from 25 to 70% with increasing plant age for both species. The results suggest that ion uptake is one of the major sinks for respiratory energy in roots. These experimentally derived values for the rate of ATP production for the maintenance of biomass, the respiratory energy coefficient for growth and the respiratory energy coefficient for ion uptake are discussed in relation to other experimentally and theoretically derived values.  相似文献   

15.
The influence of vesicular-arbuscular (VA) endomycorrhizal infectionon root morphology and architecture of a woody micropropagatedplant, Vitis vinifera L., has been investigated using morphologicalanalysis, modelling and topological methods. Endomycorrhizaformation caused increases in lateral root number and consequentlytotal root length but did not alter the number of root axes.The rate of production of any order lateral roots was higherin mycorrhizal than non-mycorrhizal controls. The number offirst- and second-order laterals increased linearly with timein mycorrhizal plants whilst in control plants both fitted alogistic function. Topological analysis indicated similar patternsof root branching in the early stages of growth, but the rootsystem of non-mycorrhizal plants adopted a more herringbonepattern after 8 weeks, whereas that of mycorrhizal plants retaineda more dichotomous pattern with repeated bifurcation. Althoughthe root system pattern of non-mycorrhizal vines is more efficientin exploring soil, it is more expensive for the plant in termsof energy cost versus return benefit (nutrient acquisition).In contrast mycorrhizal plants develop a more economical rootsystem which is rendered more efficient by the direct role ofthe mycorrhizal fungus in assisting nutrient absorption. Vitis vinifera L., vine, root system, modelling, topology, vesicular-arbuscular mycorrhizae  相似文献   

16.
The pattern of development of the inflorescence is an important characteristic in ornamental plants, where the economic value is in the flower. The genetic determinism of inflorescence architecture is poorly understood, especially in woody perennial plants with long life cycles. Our objective was to study the genetic determinism of this characteristic in rose. The genetic architectures of 10 traits associated with the developmental timing and architecture of the inflorescence, and with flower production were investigated in a F 1 diploid garden rose population, based on intensive measurements of phenological and morphological traits in a field. There were substantial genetic variations in inflorescence development traits, with broad-sense heritabilities ranging from 0.82 to 0.93. Genotypic correlations were significant for most (87%) pairs of traits, suggesting either pleiotropy or tight linkage among loci. However, non-significant and low correlations between some pairs of traits revealed two independent developmental pathways controlling inflorescence architecture: (1) the production of inflorescence nodes increased the number of branches and the production of flowers; (2) internode elongation connected with frequent branching increased the number of branches and the production of flowers. QTL mapping identified six common QTL regions (cQTL) for inflorescence developmental traits. A QTL for flowering time and many inflorescence traits were mapped to the same cQTL. Several candidate genes that are known to control inflorescence developmental traits and gibberellin signaling in Arabidopsis thaliana were mapped in rose. Rose orthologues of FLOWERING LOCUS T (RoFT), TERMINAL FLOWER 1 (RoKSN), SPINDLY (RoSPINDLY), DELLA (RoDELLA), and SLEEPY (RoSLEEPY) co-localized with cQTL for relevant traits. This is the first report on the genetic basis of complex inflorescence developmental traits in rose.  相似文献   

17.
Abstract

Pseudomonas fluorescens strains which are proven biocontrol agents in black pepper against foot rot (caused by Phytophthora capsici ) were also found to enhance root proliferation and fibre root production. Experiments conducted in the greenhouse with five efficient strains of P. fluorescens (IISR-6, IISR-8, IISR-11, IISR-13 and IISR-51) showed that the bacterial strains could significantly increase the root biomass of the plants (30 – 135%). Parameters for total root length, root area and root tips were estimated by scanning the entire root system and analysis through GS Root® software (PP systems, Winterstreet, USA). All the strains increased the root length in the treated plants (12 – 127%), the highest being with IISR-6, which was on a par with IISR-11 and IISR-51. A similar trend was observed with the total root area after bacterization (43 – 200%). The P. fluorescens treated plants had a higher number of feeder roots as evidenced by the increased number of root tips (82 – 137%). The enhanced growth parameters upon root bacterization could be corroborated with the production of the plant growth hormones IAA & GA by the bacterial strains and their P-solubilization potential.  相似文献   

18.
Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)‐preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20‐oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX‐specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild‐type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue‐specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.  相似文献   

19.
Changes in the Rooting and Growth of Willows and Poplars Induced by Cadmium   总被引:1,自引:0,他引:1  
Growth parameters of six fast growing trees showed that the roots responded to Cd treatment more sensitively than the shoots. Cd-treatment suppressed rooting and root growth (length and biomass production) as well as its development in all tested species. Root systems of Salix cinerea, Salix alba, and Populus cv. Robusta were more tolerant to Cd stress than the root system of the other studied species. Shoot growth parameters of Salix species were significantly reduced unlike Populus species, which were not affected by Cd treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号