首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Repair of damage to DNA of seed embryos sustained during long periods of quiescence under dry desert conditions is important for subsequent germination. The possibility that repair of embryo DNA can be facilitated by small amounts of water derived from dew temporarily captured at night by pectinaceous surface pellicles was tested. These pellicles are secreted during early seed development and form mucilage when hydrated. METHODS: Seeds of Artemisia sphaerocephala and Artemisia ordosica were collected from a sandy desert. Their embryos were damaged by gamma radiation to induce a standard level of DNA damage. The treated seeds were then exposed to nocturnal dew deposition on the surface of soil in the Negev desert highlands. The pellicles were removed from some seeds and left intact on others to test the ability of mucilage to support repair of the damaged DNA when night-time humidity and temperature favoured dew formation. Repair was assessed from fragmentation patterns of extracted DNA on agarose gels. KEY RESULTS: For A. sphaerocephala, which has thick seed pellicles, DNA repair occurred in seeds with intact pellicles after 50 min of cumulative night dew formation, but not in seeds from which the pellicles had been removed. For A. ordosica, which has thin seed pellicles, DNA repair took at least 510 min of cumulative night dewing to achieve partial recovery of DNA integrity. The mucilage has the ability to rehydrate after daytime dehydration. CONCLUSIONS: The ability of seeds to develop a mucilaginous layer when wetted by night-time dew, and to repair their DNA under these conditions, appear to be mechanisms that help maintain seed viability under harsh desert conditions.  相似文献   

2.
The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP‐ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear‐localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3‐1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col‐0 wild‐type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.  相似文献   

3.
不同发育时期黄皮种子脱水敏感性的研究   总被引:15,自引:0,他引:15  
自花后46d到88d果实成熟.黄皮种子的发芽率由0升至100%.而活力指数逐渐上升,到花后74d达到最大值,之后略有下降.每粒种子的呼吸强度在花后46-67d持续增加,此后则渐渐减弱,但湿藏2d后又回升.黄皮种子的发育明显超前于果实.花后74d时.每粒种子的干重已接近最大值,这时种子活力最大.而果实的鲜重虽然已接近最大值.但其干重却只有成熟时的73%。花后46-53d的种子,其发芽率小于100%,轻微脱水能提高种子的发芽率及活力指数,花后60d至果实成熟.种子发芽率均为100%.这时任何程度的脱水都会引起活力指数的下降,但不同发育时期的黄皮种子耐脱水力有差别.其中以花后67d的耐脱水力最强.花后88d果实成熟时种子的耐脱水力最弱。  相似文献   

4.
During 7 d of precocious maturation of soybean seed (Glycinemax), the starch content declined and soluble sugar levels increasedin patterns similar to natural seed dehydration and maturation.Total seed protein content and total seed dry weight increasedwhereas oil content remained relatively unchanged. Overall,the proportions of the constituents in precociously maturedseeds were comparable to naturally mature seeds. Precociouslymatured soybean seeds showed much the same germination and seedlinggrowth frequency patterns as naturally matured seeds. Duringgermination and seedling growth of precociously matured seeds,starch, soluble sugar, protein and oil levels followed patternssimilar to naturally mature, germinating seeds and seedlings.Therefore, precocious maturation may be used as a model systemto investigate the control of the physiological and biochemicalevents occurring during seed maturation which lead to germinationand subsequently, seedling growth. Glycine max (L.) Merr., soybean, cotyledons, maturation, germination/seedling growth  相似文献   

5.
6.
Under defined environmental conditions (20°C, continuous light of 15 klx) development of mustard seeds from artificial pollination to maturity takes about 60 d. After surpassing the period of embryo cell division and histodifferentiation (12–14d after pollination = dap), the seed enters into a maturation period. The time courses of various physiological, biochemical, and structural changes of embryo and testa during seed maturation were analyzed in detail (dry and fresh mass changes, osmotic and water potential changes, respiration, DNA amplification by endomitosis, total ribosome and polysome formation, storage protein synthesis and accumulation, storage lipid accumulation). In addition to the final storage products protein and lipid, embryo and testa accumulate transiently large amounts of starch within the chloroplasts during early maturation. Concomitantly with the subsequent total breakdown of the starch, the plastids lose most of their internal structure and chlorophyll and shrink into proplastids, typical for the mature seed. At about 30 dap the seeds shift from a desiccation-sensitive to a desiccation-tolerant state and are able then to germinate rapidly upon drying and reimbibition. If isolated from the immature fruit and sown directly on water, the seeds demonstrate precocious germination from about 13 dap onwards. Young seeds (isolated ≦ 38 dap) germinate only after surpassing a lag-phase of several days (after-ripening) during which the embryo continues to accumulate storage protein and lipid at the expense of the surrounding seed tissues. We conclude from these results that the maturing seed represents a rather closed developmental system which is able to continue its development up to successful germination without any specific regulatory influence from the mother plant. Immature seeds are able to germinate without a preceding dehydration treatment, which means that partial or full desiccation does not serve as an environmental signal for reprogramming seed development from maturation to germination. Instead, it is argued that the water relations of the seed are a critical element in the control of maturation and germination: during maturation on the mother plant the embryo is subject to a considerable turgor pressure (of the order of 12 bar) accompanied by a low water potential (of the order of ?12 bar). This turgor permits maturation growth but is subcritical for germination growth. However, upon imbibition in water, the low water potential provides a driving force for a burst of water uptake overcoming the critical turgor threshold and thereby inducing germination.  相似文献   

7.
A range of post-storage priming treatments were evaluated todevelop a protocol for priming pea seeds. Post-storage primingtreatments at 16 °C with PEG-8000 (-0·5, -1·0and -1·2 MPa), ABA (10-1 M) and distilled water for 3,5 and 7 d ameliorated some of the damage which resulted fromageing. Most of the benefits occurred during the first 3 d withPEG or ABA and during the first 5 d distilled water. Primingtreatments increased the final germination and decreased themean germination time (MGT) and the frequency of chromosomalaberrations, possibly due to the repair of some age-induceddamage. The results of the priming experiment suggest that thecritical moisture content that facilitates repair of chromosomaldamage in pea seeds is likely to be between 32 and 46%. ABAhas been identified as a possible chemical which arrests germinationand facilitates repair of age-induced genetic damage.Copyright1995, 1999 Academic Press Pisum sativum, Pea, PEG, Polyethylene glycol, ABA, Abscisic acid, MGT, Mean germination time, seed priming, chromosome repair  相似文献   

8.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   

9.
Thiamin-binding proteins (TBPs) occur in many types of plant seeds. The biochemical and structural properties such as subunit structure and affinity for thiamin of the proteins have been characterized. However, the change of TBP and thiamin during seed maturation and germination is little known. Sesame (Sesamum indicum L.) seeds have unique albumin TBPs, because the other TBPs from plant seeds are generally globulins. In this study, we studied the change of the TBP and thiamin levels in sesame seeds. The protein content and thiamin-binding activity of the seeds increased with seed development after flowering. Immunological analysis using an antibody against the TBP of sesame seeds showed that the protein was accumulated in seeds during maturation. The thiamin content of the seeds increased with seed development after flowering. On the other hand, the thiamin-binding activity decreased during seed germination when TBP was degraded. The thiamin content of the seeds decreased during the germination. However, the amount of thiamin phosphate in the seeds during germination was little changed. These results suggested that thiamin was accumulated and stored as a complex with TBP in sesame seeds.  相似文献   

10.
Eukaryotes express several cytoplasmic HSP70 genes, and their encoded proteins participate in diverse cellular processes. Three cDNAs encoding highly expressed cytoplasmic HSP70 homologues from Pisum sativum were cloned and characterized. They were designated PsHSP71.2, PsHSC71.0, and PsHSP70b. These HSP70 genes have different expression profiles in leaves: PsHSP71.2 is observed only in response to heat stress, PsHSC71.0 is present constitutively, and PsHSP70b is weakly constitutively expressed, but induced strongly in response to heat stress. In addition to being heat induced, the PsHSP71.2 mRNA is also expressed in zygotic, but not maternal organs of developing pea seeds, while PsHSC71.0 and PsHSP70b mRNAs are present in maternal and zygotic organs throughout seed development. Immunoblot analysis of parallel protein samples detects a 70 kDa polypeptide in all samples, and a 72 kDa polypeptide that corresponds to the PsHSP71.2 gene product is observed in cotyledons beginning at mid-maturation and in axes beginning between late maturation and desiccation. This polypeptide is not detected in the seed coat. The 72 kDa polypeptide remains abundant in both cotyledons and axes through germination, but declines substantially between 48 and 72 h after the onset of imbibition. Differential control of HSP70 expression during heat stress, seed maturation, and germination is consistent with the hypothesis that there are functional distinctions between cytoplasmic HSP70s.  相似文献   

11.
12.
13.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

14.
15.
花生果针入土后16天(16 DAP),种子干重和鲜重开始迅速增加。整个发育阶段可分为5个时期:组织分化期(0~20 DAP)、成熟前期(21~28 DAP)、成熟中期(29~40DAP)、成熟中后期(41~62 DAP)和成熟后期(63~88DAP)。种子发芽率在成熟前期和中期迅速提高并到达最大值,而苗成活率在成熟中后期达到最大值,苗鲜重则以88 DAP种子的为最大。种子发育过程中,贮藏蛋白质的合成与积累模式与种子干重变化相似。SDS-PAGE分析表明,种子发育初期(16 DAP)子叶中已积累花生球蛋白和伴花生球蛋白I。双向凝胶电泳显示花生球蛋白各个亚基在20DAP时均已存在,伴花生球蛋白I的主要亚基在整个发育过程中其等电点有所变化,含量也逐渐增加。其他蛋白质在种子发芽力形成阶段(20~40 DAP)的变化较为显著。  相似文献   

16.
17.
Effect of stimulating maize germination on cell cycle proteins   总被引:2,自引:0,他引:2  
The germination process can be accelerated if seeds are stimulated either by adding cytokinins or by osmopriming. Under these conditions, cells in maize ( Zea mays ) embryo axes shorten the time at which the first round of DNA replication and mitosis takes place, thus advancing the cell cycle. Using heterologous antibodies against different cell cycle proteins, we have followed the behaviour of several markers for G1 phase (cyclin D, E2F and p53) and a marker of G2 phase (cyclin B) under either control or "accelerated" germination conditions. The results showed two classes of behaviour: either there was no variation in the amount of the protein present under control or accelerated germination conditions, represented by cyclin Band E2F‐type proteins, or the amount of the proteins was drastically reduced, more rapidly under accelerated germination, as was the case for cyclin D‐ and p53‐type proteins. Although the cyclin D‐type protein was synthesized de novo during germination, the balance was towards degradation so that there was no cyclin D detected 15 h after germination in benzyladenine‐treated and osmoprimed seeds. A Cdk4‐type protein seemed to be present in cyclin D immunoprecipitates and its kinase activity paralleled the fluctuations of the cyclin amount during germination. These data are discussed in the context of early seed germination.  相似文献   

18.
A cDNA clone GmPM4 which encodes mRNA species in mature or dry soybean seeds was characterized. DNA sequence analysis shows that the deduced polypeptides have a molecular mass of 68 kDa. GmPM4 proteins have a relatively high amino acid sequence homology with a major biotinylated protein isolated from pea seeds, SBP65, but both of these proteins differ markedly from that of presently known biotin enzymes. The accumulation of GmPM4 mRNA is detectable in the leaf primodium and the vascular tissues of the hypocotyl-radicle axis of mature seeds, and the GmPM4 proteins are present at high levels in dry and mature soybean seeds, but not in fresh immature seeds. It degrades rapidly at the early stage of seed germination. These proteins are boiling-soluble and biotinylated when they are present endogenously in soybean seeds; however, the same recombinant protein expressed in Escherichia coli is boiling-soluble, but it is not biotinylated.  相似文献   

19.
20.
Seeds of the beanPhaseolus vulgaris L. (Veltruská Saxa cultivar) were gathered gradually at different stages of development, starting at fertilization up to full maturity. Seeds were freeze-dried and the dry solid used for preparing extracts which were analyzed by immunoelectrophoresis for the presence of proteins resembling those contained in the cotyledons of a mature seed. Proteins from cotyledons of the first stages of development of bean seedlings were analyzed similarly. After a preparatory period, approximately from the second—third seed development stage, there is a period of intense protein synthesis that characterizes cotyledons of a mature seed. These proteins increase in quantity and are differentiated in quality up to maturity when a single antiserum detected a total of 12. After germination both the quantity and number of these proteins decreases. It was found that some proteins are metabolically more active, both during synthesis and cleavage. This holds e.g. for phaseolin during maturation, as well as during germination. In addition, phaseolin changes its electrophoretic mobility, which is apparently due to proteolytic hydrolysis of phaseolin molecules. During the last phase of maturation, viz. dehydration of seeds, some new proteins suddenly appear, apparently synthesized from pre-formed peptide chains. In the discussion the possibility is taken up that the beginning on the synthesis of specific proteins characteristic for mature seeds is the cause underlying the disturbances in the embryonal development of distant hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号